skip to main content

Search for: All records

Award ID contains: 1636646

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In 21-cm cosmology, precision calibration is key to the separation of the neutral hydrogen signal from very bright but spectrally smooth astrophysical foregrounds. The Hydrogen Epoch of Reionization Array (HERA), an interferometer specialized for 21-cm cosmology and now under construction in South Africa, was designed to be largely calibrated using the self-consistency of repeated measurements of the same interferometric modes. This technique, known as redundant-baseline calibration resolves most of the internal degrees of freedom in the calibration problem. It assumes, however, on antenna elements with identical primary beams placed precisely on a redundant grid. In this work, we review the detailed implementation of the algorithms enabling redundant-baseline calibration and report results with HERA data. We quantify the effects of real-world non-redundancy and how they compare to the idealized scenario in which redundant measurements differ only in their noise realizations. Finally, we study how non-redundancy can produce spurious temporal structure in our calibration solutions – both in data and in simulations – and present strategies for mitigating that structure.
  2. Abstract We introduce DAYENU, a linear, spectral filter for HI intensity mapping that achieves the desirable foreground mitigation and error minimization properties of inverse co-variance weighting with minimal modeling of the underlying data. Beyond 21 cm power-spectrum estimation, our filter is suitable for any analysis where high dynamic-range removal of spectrally smooth foregrounds in irregularly (or regularly) sampled data is required, something required by many other intensity mapping techniques. Our filtering matrix is diagonalized by Discrete Prolate Spheroidal Sequences which are an optimal basis to model band-limited foregrounds in 21 cm intensity mapping experiments in the sense that they maximally concentrate power within a finite region of Fourier space. We show that DAYENU enables the access of large-scale line-of-sight modes that are inaccessible to tapered DFT estimators. Since these modes have the largest SNRs, DAYENU significantly increases the sensitivity of 21 cm analyses over tapered Fourier transforms. Slight modifications allow us to use DAYENU as a linear replacement for iterative delay CLEANing (DAYENUREST). We refer readers to the Code section at the end of this paper for links to examples and code.
  3. Abstract The detection of the Epoch of Reionization (EoR) delay power spectrum using a ”foreground avoidance method” highly depends on the instrument chromaticity. The systematic effects induced by the radio-telescope spread the foreground signal in the delay domain, which contaminates the EoR window theoretically observable. Applied to the Hydrogen Epoch of Reionization Array (HERA), this paper combines detailed electromagnetic and electrical simulations in order to model the chromatic effects of the instrument, and quantify its frequency and time responses. In particular, the effects of the analogue receiver, transmission cables, and mutual coupling are included. These simulations are able to accurately predict the intensity of the reflections occurring in the 150-m cable which links the antenna to the back-end. They also show that electromagnetic waves can propagate from one dish to another one through large sections of the array due to mutual coupling. The simulated system time response is attenuated by a factor 104 after a characteristic delay which depends on the size of the array and on the antenna position. Ultimately, the system response is attenuated by a factor 105 after 1400 ns because of the reflections in the cable, which corresponds to characterizable k∥-modes above 0.7 $h\,\,\rm {Mpc}^{-1}$ at 150 MHz.more »Thus, this new study shows that the detection of the EoR signal with HERA Phase I will be more challenging than expected. On the other hand, it improves our understanding of the telescope, which is essential to mitigate the instrument chromaticity.« less
  4. Abstract Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known “ground truth” dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6× 105 HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phasemore »when predicting achieves a Recall of 0.81, Precision of 0.58, and F2 score of 0.75 as applied to our HERA-67 observations.« less