Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is growing recognition that unambiguous citation and tracking of physical samples allows previously impossible linking of samples to data and publications, linking and integration of sample-based observations across data systems, and paves the road towards advanced data mining of sample-based data. And in recent years, there has been an uptake in the use of Persistent Identifiers (PIDs) for physical samples to support such citation and tracking. The IGSN (International Geo Sample Number) is a PID for physical samples. It was originally developed for the solid earth sciences, and has evolved into an international PID system with members in five continents and a network of active allocating agents. It has been adopted by a growing number and range of stakeholders worldwide, including national geological surveys, research infrastructure providers, collection curators, researchers, and data managers, and by other disciplines that need to refer to physical samples. Nearly 6.9 million samples have been registered with IGSNs so far. The IGSN system uses the Handle System (Kahn and Wilensky 1995; see also Handle.Net ® ) and has an international organization, IGSN e.V., to manage its governance structure and the technical architecture. The recent expansion of the IGSN beyond the geosciences into other domains such as biodiversity, archeology, and material sciences confirms the power of its concept and implementation, but imposes substantial pressures on the existing capacity and capabilities of the IGSN architecture and its governing organization. Modifications to the IGSN organizational and technical architecture are necessary at this point to keep pace with the growing demand and expectations. These changes are also necessary to ensure trustworthy and sustainable services for PID registration and resolution in a maturing research data ecosystem. The essential criteria for a trustworthy system include an organizational foundation that ensures longevity, sustainability, proper governance, and regular quality assessment of registration services. It also includes a reliable and secure technical platform, based on open standards, which is sufficiently scalable and flexible to accommodate the growing diversity of specimen types, use cases, and stakeholder requirements. In 2018, a major planning project for the IGSN was funded by the Alfred P. Sloan Foundation. An international group of experts participates in re-designing and improving the existing organization and technical architecture of the IGSN system, revising the current business model of the IGSN e.V. and professionalizing its operations. The goal is for the IGSN system to be able to respond to, and support in a sustainable manner, the rapidly growing demands of a global and increasingly multi-disciplinary user community, and to ensure that the IGSN will be a trustworthy, stable, and adaptable persistent identifier system for material samples, both technically and organizationally. The end result should also satisfy and facilitate participation across research domains, and will be a reliable component of the evolving research data ecosystem. Finally, it will ensure that the IGSN is recognized as a trusted partner by data infrastructure providers and the science community alike.more » « less
-
The composition and state of the earth’s lithosphere through time has had profound effect on past and present biodiversity and will continue to do so into the future. Environments ranging from deep sea hydrothermal vents to active continental volcanic centres provide a wide range of ecosystems that have shaped the planet we know. Catastrophic events relating to movements of the lithosphere and events deep in the mantle have also caused major biodiversity changes such as mass extinctions. Our museum collections contain rock and fossil specimens collected from many of these environments and suites of samples specifically collected in order to better understand the evolution of our planet. Requests to carry out geochemical investigations on these samples are common and a large amount of data is generated as a result. Currently there are no natural history collections management systems tailored towards recording and delivering these datasets and the result is that the data is recorded in various distributed systems and cannot be easily assessed and used. It is important for these analyses on our museum collections to be delivered in a standard way so that the importance and relevance of these collections can be demonstrated and large datasets generated to answer big questions regarding the geological evolution of our planet. Examples of these questions include “how and when will volcanic eruptions will occur?” and “what has been the role of volcanism during mass extinction?”. Other geochemical studies such as oxygen isotope studies have been carried out on museum collections in order to investigate past oceanic environments and the effects of changes in climate on our oceans. Geochemical data aggregators such as EarthChem have made great strides in working towards international data standards and providing portals for delivering this type of data. As we progress towards one European Collection (DiSSCo) it is vital that we recognise the importance of these natural history collections related geochemical datasets and include delivering them on the general roadmap.more » « less
An official website of the United States government
