skip to main content


Search for: All records

Award ID contains: 1638099

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article presents an understanding of naive users’ perception of the communicative nature of unmanned aerial vehicle (UAV) motions refined through an iterative series of studies. This includes both what people believe the UAV is trying to communicate, and how they expect to respond through physical action or emotional response. Previous work in this area prioritized gestures from participants to the vehicle or augmenting the vehicle with additional communication modalities, rather than communicating without clear definitions of the states attempting to be conveyed. In an attempt to elicit more concrete states and better understand specific motion perception, this work includes multiple iterations of state creation, flight path refinement, and label assignment. The lessons learned in this work will be applicable broadly to those interested in defining flight paths, and within the human-robot interaction community as a whole, as it provides a base for those seeking to communicate using non-anthropomorphic robots. We found that the Negative Attitudes towards Robots Scale (NARS) can be an indicator of how a person is likely to react to a UAV, the emotional content they are likely to perceive from a message being conveyed, and it is an indicator for the personality characteristics they are likely to project upon the UAV. We also see that people commonly associate motions from other non-verbal communication situations onto UAVs. Flight specific recommendations are to use a dynamic retreating motion from a person to encourage following, use a perpendicular motion to their field of view for blocking, simple descending motion for landing, and to use either no motion or large altitude changes to encourage watching. Overall, this research explores the communication from the UAV to the bystander through its motion, to see how people respond physically and emotionally. 
    more » « less
  2. null (Ed.)
    Several independent approaches exist for state estimation and control of multirotor unmanned aerial systems (UASs) that address specific and constrained operational conditions. This work presents a complete end-to-end pipeline that enables precise, aggressive and agile maneuvers for multirotor UASs under real and challenging outdoor environments. We leverage state-of-the-art optimal methods from the literature for trajectory planning and control, such that designing and executing dynamic paths is fast, robust and easy to customize for a particular application. The complete pipeline, built entirely using commercially available components, is made open-source and fully documented to facilitate adoption. We demonstrate its performance in a variety of operational settings, such as hovering at a spot under dynamic wind speeds of up to 5–6 m/s (12–15 mi/h) while staying within 12 cm of 3D error. We also characterize its capabilities in flying high-speed trajectories outdoors, and enabling fast aerial docking with a moving target with planning and interception occurring in under 8 s. 
    more » « less
  3. null (Ed.)
    Several independent approaches exist for state estimation and control of multirotor unmanned aerial systems (UASs) that address specific and constrained operational conditions. This work presents a complete end-to-end pipeline that enables precise, aggressive and agile maneuvers for multirotor UASs under real and challenging outdoor environments. We leverage state-of-the-art optimal methods from the literature for trajectory planning and control, such that designing and executing dynamic paths is fast, robust and easy to customize for a particular application. The complete pipeline, built entirely using commercially available components, is made open-source and fully documented to facilitate adoption. We demonstrate its performance in a variety of operational settings, such as hovering at a spot under dynamic wind speeds of up to 5–6 m/s (12–15 mi/h) while staying within 12 cm of 3D error. We also characterize its capabilities in flying high-speed trajectories outdoors, and enabling fast aerial docking with a moving target with planning and interception occurring in under 8 s. 
    more » « less
  4. Siciliano, B. ; Laschi, C. ; Khatib, O. (Ed.)
    Multirotor systems have traditionally been employed for missions that ensure minimal contact with the objects in their vicinity. However, their agile flight dynamics lets them sense, plan and react rapidly, and therefore perform highly dynamic missions. In this work, we push their operational envelope further by developing a complete framework that allows a multirotor to dock with a moving platform. Our approach builds on state-of-the-art and optimal methods for estimating and predicting the state of the moving platform, as well as for generating interception trajectories for the docking multirotor. Through a total of 25 field tests outdoors, we demonstrate the capabilities of our system in docking with a platform moving at different speeds and in various operating conditions. We also evaluate the quality of our system’s trajectory following at speeds over 2 m/s to effect docking within 10 s. 
    more » « less
  5. Siciliano, B. ; Laschi, C. ; Khatib, O. (Ed.)
    Deployment of sensors in hard-to-access locations can improve data gathering for scientific studies. We have developed a sensor emplacement system that can be mounted to unmanned aircraft systems with vertical takeoff and landing capabilities to autonomously auger a sensor into the ground. Various techniques can be chosen to enhance the augering process when certain characteristics of the soil are known. Moisture content and compressive strength are the soil characteristics that most impact the augering process, yet directly measuring them would require additional sensors to an already-burdened airframe. We address this through a novel means of predicting these soil characteristics within the first 30 s of an average 85 s augering evolution using onboard sensors and a Gaussian process regression scheme that predicts the soil moisture content and compressive strength with accuracy of 86.53% and 90.53% of the respective measured values. 
    more » « less
  6. Siciliano, B. ; Laschi, C. ; Khatib, O. (Ed.)
    Deployment of sensors in hard-to-access locations can improve data gathering for scientific studies. We have developed a sensor emplacement system that can be mounted to unmanned aircraft systems with vertical takeoff and landing capabilities to autonomously auger a sensor into the ground. Various techniques can be chosen to enhance the augering process when certain characteristics of the soil are known. Moisture content and compressive strength are the soil characteristics that most impact the augering process, yet directly measuring them would require additional sensors to an already-burdened airframe. We address this through a novel means of predicting these soil characteristics within the first 30 s of an average 85 s augering evolution using onboard sensors and a Gaussian process regression scheme that predicts the soil moisture content and compressive strength with accuracy of 86.53% and 90.53% of the respective measured values. 
    more » « less
  7. null (Ed.)
    This work has developed an iteratively refined understanding of participants’ natural perceptions and responses to unmanned aerial vehicle (UAV) flight paths, or gestures. This includes both what they believe the UAV is trying to communicate to them, in addition to how they expect to respond through physical action. Previous work in this area has focused on eliciting gestures from participants to communicate specific states, or leveraging gestures that are observed in the world rather than on understanding what the participants believe is being communicated and how they would respond. This work investigates previous gestures either created or categorized by participants to understand the perceived content of their communication or expected response, through categories created by participant free responses and confirmed through forced choice testing. The human-robot interaction community can leverage this work to better understand how people perceive UAV flight paths, inform future designs for non-anthropomorphic robot communications, and apply lessons learned to elicit informative labels from people who may or may not be operating the vehicle. We found that the Negative Attitudes towards Robots Scale (NARS) can be a good indicator of how we can expect a person to react to a robot. Recommendations are also provided to use motion approaching/retreating from a person to encourage following, perpendicular to their field of view for blocking, and to use either no motion or large altitude changes to encourage viewing. 
    more » « less