skip to main content


Search for: All records

Award ID contains: 1638725

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In urban areas, anthropogenic drivers of ecosystem structure and function are thought to predominate over larger‐scale biophysical drivers. Residential yards are influenced by individual homeowner preferences and actions, and these factors are hypothesized to converge yard structure across broad scales. We examined soil total C and total δ13C, organic C and organic δ13C, total N, and δ15N in residential yards and corresponding reference ecosystems in six cities across the United States that span major climates and ecological biomes (Baltimore, Maryland; Boston, Massachusetts; Los Angeles, California; Miami, Florida; Minneapolis‐St. Paul, Minnesota; and Phoenix, Arizona). Across the cities, we found soil C and N concentrations and soil δ15N were less variable in residential yards compared to reference sites supporting the hypothesis that soil C, N, and δ15N converge across these cities. Increases in organic soil C, soil N, and soil δ15N across urban, suburban, and rural residential yards in several cities supported the hypothesis that soils responded similarly to altered resource inputs across cities, contributing to convergence of soil C and N in yards compared to natural systems. Soil C and N dynamics in residential yards showed evidence of increasing C and N inputs to urban soils or dampened decomposition rates over time that are influenced by climate and/or housing age across the cities. In the warmest cities (Los Angeles, Miami, Phoenix), greater organic soil C and higher soil δ13C in yards compared to reference sites reflected the greater proportion of C4plants in these yards. In the two warm arid cities (Los Angeles, Phoenix), total soil δ13C increased and organic soil δ13C decreased with increasing home age indicating greater inorganic C in the yards around newer homes. In general, soil organic C and δ13C, soil N, and soil δ15N increased with increasing home age suggesting increased soil C and N cycling rates and associated12C and14N losses over time control yard soil C and N dynamics. This study provides evidence that conversion of native reference ecosystems to residential areas results in convergence of soil C and N at a continental scale. The mechanisms underlying these effects are complex and vary spatially and temporally.

     
    more » « less
  2. Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. Negative interactions between people and wildlife pose a significant challenge to their coexistence. Past research on human–wildlife interactions has largely focused on conflicts involving carnivores in rural areas. Additional research is needed in urban areas to examine the full array of negative and positive interactions between people and wildlife. In this study, we have conducted interviews in the desert metropolis of Phoenix, Arizona (USA), to explore residents’ everyday interactions with wildlife where they live. Our multifaceted approach examines interactions involving physical contact and observational experiences, as well as associated attitudinal and behavioral responses and actions toward wildlife. Overall, the qualitative analysis of residents’ narratives identified two distinct groups: people who are indifferent toward wildlife where they live, and those who appreciate and steward wildlife. Instead of revealing conflicts and negative interactions toward wildlife, our findings underscore the positive interactions that can foster human wellbeing in urban areas. The holistic approach presented herein can advance knowledge and the management of coexistence, which involves not only managing conflicts but also tolerance, acceptance, and stewardship. Understanding diverse human–wildlife interactions and managing coexistence can advance both wildlife conservation and human wellbeing in cities.

     
    more » « less
  5. Introduction Integrated social and ecological processes shape urban plant communities, but the temporal dynamics and potential for change in these managed communities have rarely been explored. In residential yards, which cover about 40% of urban land area, individuals make decisions that control vegetation outcomes. These decisions may lead to relatively static plant composition and structure, as residents seek to expend little effort to maintain stable landscapes. Alternatively, residents may actively modify plant communities to meet their preferences or address perceived problems, or they may passively allow them to change. In this research, we ask, how and to what extent does residential yard vegetation change over time? Methods We conducted co-located ecological surveys of yards (in 2008, 2018, and 2019) and social surveys of residents (in 2018) in four diverse neighborhoods of Phoenix, Arizona. Results 94% of residents had made some changes to their front or back yards since moving in. On average, about 60% of woody vegetation per yard changed between 2008 and 2018, though the number of species present did not differ significantly. In comparison, about 30% of woody vegetation changed in native Sonoran Desert reference areas over 10 years. In yards, about 15% of woody vegetation changed on average in a single year, with up to 90% change in some yards. Greater turnover was observed for homes that were sold, indicating a “pulse” of management. Additionally, we observed greater vegetation turnover in the two older, lawn-dominated neighborhoods surveyed despite differences in neighborhood socioeconomic factors. Discussion These results indicate that residential plant communities are dynamic over time. Neighborhood age and other characteristics may be important drivers of change, while socioeconomic status neither promotes nor inhibits change at the neighborhood scale. Our findings highlight an opportunity for management interventions, wherein residents may be open to making conservation-friendly changes if they are already altering the composition of their yards. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)