skip to main content


Search for: All records

Award ID contains: 1639865

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    210Bi (t1/2: 5.01 d)—the daughter of210Pb and parent of210Po—has rarely been measured in aquatic systems, and its behavior in the water column is poorly understood. In this article, I present a method for quickly measuring210Pb,210Bi, and210Po in aquatic samples, where (1)210Bi and210Po are scavenged onto an anion solid‐phase extraction disk within 15 min of pretreating the sample; (2) beta decay of210Bi is counted on the disk immediately thereafter; (3)210Po is subsequently removed from the disk and redeposited on a copper plate for α‐spectroscopy; and (4)210Pb is determined via the ingrowth of210Bi. I present decay‐corrected calculations for total, dissolved, and particle‐bound fractions of each nuclide and conclude with an analysis of210Pb,210Bi, and210Po activities in rain,dreissenid(quagga) mussels, and water samples from the Milwaukee Inner Harbor in Lake Michigan. Results show that the loss of lead on the anion solid‐phase extraction disks was negligible (0.2% ± 2.1%; ± 1 SD,n= 4), and the sorption of bismuth was complete (99% ± 2%; ± 1 SD,n= 16). Relative mean absolute deviations of duplicate sample analyses of lake water were 2.4% ± 1.9% for210Pb (geometric mean of total sample activity: 3.0 disintegrations per minute [dpm],n= 6), 7.7% ± 5.8% for210Bi (geometric mean of total sample activity: 2.6 dpm,n= 8), and 2.7% ± 1.7% for210Po (geometric mean of total sample activity: 1.4 dpm,n= 8).

     
    more » « less