skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1643174

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Changes in the rate of ocean‐driven basal melting of Antarctica's ice shelves can alter the rate at which the grounded ice sheet loses mass and contributes to sea level change. Melt rates depend on the inflow of ocean heat, which occurs through steady circulation and eddy fluxes. Previous studies have demonstrated the importance of eddy fluxes for ice shelves affected by relatively warm intrusions of Circumpolar Deep Water. However, ice shelves on cold water continental shelves primarily melt from dense shelf water near the grounding line and from light surface water at the ice shelf front. Eddy effects on basal melt of these ice shelves have not been studied. We investigate where and when a regional ocean model of the Ross Sea resolves eddies and determine the effect of eddy processes on basal melt. The size of the eddies formed depends on water column stratification and latitude. We use simulations at horizontal grid resolutions of 5 and 1.5 km and, in the 1.5‐km model, vary the degree of topography smoothing. The higher‐resolution models generate about 2–2.5 times as many eddies as the low‐resolution model. In all simulations, eddies cross the ice shelf front in both directions. However, there is no significant change in basal melt between low‐ and high‐resolution simulations. We conclude that higher‐resolution models (<1 km) are required to better represent eddies in the Ross Sea but hypothesize that basal melt of the Ross Ice Shelf is relatively insensitive to our ability to fully resolve the eddy field. 
    more » « less
  2. null (Ed.)
    Abstract Ice shelves play a critical role in modulating dynamic loss of ice from the grounded portion of the Antarctic Ice Sheet and its contribution to sea-level rise. Measurements of ice-shelf motion provide insights into processes modifying buttressing. Here we investigate the effect of seasonal variability of basal melting on ice flow of Ross Ice Shelf. Velocities were measured from November 2015 to December 2016 at 12 GPS stations deployed from the ice front to 430 km upstream. The flow-parallel velocity anomaly at each station, relative to the annual mean, was small during early austral summer (November–January), negative during February–April, and positive during austral winter (May–September). The maximum velocity anomaly reached several metres per year at most stations. We used a 2-D ice-sheet model of the RIS and its grounded tributaries to explore the seasonal response of the ice sheet to time-varying basal melt rates. We find that melt-rate response to changes in summer upper-ocean heating near the ice front will affect the future flow of RIS and its tributary glaciers. However, modelled seasonal flow variations from increased summer basal melting near the ice front are much smaller than observed, suggesting that other as-yet-unidentified seasonal processes are currently dominant. 
    more » « less