skip to main content


Search for: All records

Award ID contains: 1643773

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dense, fast-moving regions of ionization called polar cap patches are known to occur in thehigh-latitudeFregion ionosphere. Patches are widely believed to be caused by convection of dense, sunlitplasma into a dark and therefore low-density polar cap ionosphere. This leads to the belief that patches are awinter phenomenon. Surprisingly, a long-term analysis of 3 years of ionospheric measurements from theSwarm satellites shows that large density enhancements occur far more frequently in local summer than localwinter in the Southern Hemisphere (SH). The reverse is true in the Northern Hemisphere (NH). Previouslyreported patch detections in the SH are reexamined. Detection algorithms using only a relative doubling testcount very small densityfluctuations in SH winter due to extremely low ambient densities found there,while much larger enhancements occurring in SH summer are missed due to especially high ambientdensities. The same problem does not afflict results in the NH, where ambient densities are more stableyear-round due to the ionospheric annual asymmetry. Given this new analysis, the definition of a patch as adoubling of the ambient density is not suitable for the SH. We propose a test for patches linked to long-termaveraged solarflux activity, characterized by the 81 day centered meanF10.7index. Importantly, thecurrent patch formation theory is at least incomplete in that it does not predict the observed lack of patchesin SH winter, or the many large enhancements seen in SH summer 
    more » « less