skip to main content


Search for: All records

Award ID contains: 1643901

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This is Part II of a study examining wintertime destratification in Antarctic coastal polynyas, focusing on providing a qualitative description of the influence of ice tongues and headlands, both common geometric features neighboring the polynyas. The model of a coastal polynya used in Part I is modified to include an ice tongue and a headland to investigate their impacts on the dispersal of water formed at the polynya surface, which is referred to as Polynya Source Water (PSW) here. The model configuration qualitatively represents the settings of some coastal polynyas, such as the Terra Nova Bay Polynya. The simulations highlight that an ice tongue next to a polynya tends to break the alongshore symmetry in the lateral return flows toward the polynya, creating a stagnant region in the corner between the ice tongue and polynya where outflow of the PSW in the water column is suppressed. This enhances sinking of the PSW and accelerates destratification of the polynya water column. Adding a headland to the other side of the polynya tends to restore the alongshore symmetry in the lateral return flows, which increases the offshore PSW transport and slows down destratification in the polynya. This work stresses the importance of resolving small-scale geometric features in simulating vertical mixing in the polynya. It provides a framework to explain spatial and temporal variability in rates of destratification and Dense Shelf Water formation across Antarctic coastal polynyas, and helps understand why some polynyas are sources of Antarctic Bottom Water while others are not.

     
    more » « less
  2. Abstract

    This study examines the process of water-column stratification breakdown in Antarctic coastal polynyas adjacent to an ice shelf with a cavity underneath. This first part of a two-part sequence seeks to quantify the influence of offshore katabatic winds, alongshore winds, air temperature, and initial ambient stratification on the time scales of polynya destratification through combining process-oriented numerical simulations and analytical scaling. In particular, the often-neglected influence of wind-driven circulation on the lateral transport of the water formed at the polynya surface—which we call Polynya Source Water (PSW)—is systematically examined here. First, an ice shelf–sea ice–ocean coupled numerical model is adapted to simulate the process of PSW formation in polynyas of various configurations. The simulations highlight that (i) before reaching the bottom, majority of the PSW is actually carried away from the polynya by katabatic wind–induced offshore outflow, diminishing water-column mixing in the polynya and intrusion of the PSW into the neighboring ice shelf cavity, and (ii) alongshore coastal easterly winds, through inducing onshore Ekman transport, reduce offshore loss of the PSW and enhance polynya mixing and PSW intrusion into the cavity. Second, an analytical scaling of the destratification time scale is derived based on fundamental physical principles to quantitatively synthesize the influence of the physical factors, which is then verified by independent numerical sensitivity simulations. This work provides insights into the mechanisms that drive temporal and cross-polynya variations in stratification and PSW formation in Antarctic coastal polynyas, and establishes a framework for studying differences among the polynyas in the ocean.

     
    more » « less
  3. Abstract

    The Southern Ocean is chronically undersampled due to its remoteness, harsh environment, and sea ice cover. Ocean circulation models yield significant insight into key processes and to some extent obviate the dearth of data; however, they often underestimate surface mixed layer depth (MLD), with consequences for surface water‐column temperature, salinity, and nutrient concentration. In this study, a coupled circulation and sea ice model was implemented for the region adjacent to the West Antarctic Peninsula, a climatically sensitive region which has exhibited decadal trends towards higher ocean temperature, shorter sea ice season, and increasing glacial freshwater input, overlain by strong interannual variability. Hindcast simulations were conducted with different air‐ice drag coefficients and Langmuir circulation parameterizations to determine the impact of these factors on MLD. Including Langmuir circulation deepened the surface mixed layer, with the deepening being more pronounced in the shelf and slope regions. Optimal selection of an air‐ice drag coefficient also increased modeled MLD by similar amounts and had a larger impact in improving the reliability of the simulated MLD interannual variability. This study highlights the importance of sea ice volume and redistribution to correctly reproduce the physics of the underlying ocean, and the potential of appropriately parameterizing Langmuir circulation to help correct for biases towards shallow MLD in the Southern Ocean. The model also reproduces observed freshwater patterns in the West Antarctic Peninsula during late summer and suggests that areas of intense summertime sea ice melt can still show net annual freezing due to high sea ice formation during the winter.

     
    more » « less
  4. null (Ed.)
    In a fast-changing world, polar ecosystems are threatened by climate variability. Understanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world's longest dataset of emperor penguin ( Aptenodytes forsteri ) breeding parameters, we studied the effects of fine-scale variability of LFI and weather conditions on this species' reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive to LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)