skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1645025

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, a prediction model is developed to illustrate the relationship between the internal parameters of a vehicle and its emissions. Vehicles emit various hazardous pollutants and understanding the influence of in-vehicle parameters is key to reducing their environmental impact. The values of the internal parameters were collected through the On-Board Diagnostics port, while the values of the emissions were measured from the exhaust pipe using Arduino sensors. The observed values were then matched based on the timestamps received from both sources and fit with both linear and polynomial regressions to accurately model the relationship between the internal parameters and pollutants. These models can then be used to estimate vehicle emissions based on the in-vehicle parameters, including vehicle speed, relative throttle position, and engine revolutions per minute. A wide majority of the relationships between various in-vehicle parameters and emissions show no observable correlation. There are observable correlations between carbon dioxide emissions and vehicle speed, as well as carbon dioxide emissions and engine revolutions per minute. These relationships were modelled using linear and polynomial regression with a resulting adjusted R-squared value of approximately 0.1. 
    more » « less