skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1645381

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shannon determined that the zero-error capacity of a point-to-point channel whose channel p(y|x) has confusability graph GX|Y is positive if and only if there exist two inputs that are “non-adjacent”, or “non-confusable”. Equivalently, it is non-zero if and only if the independence number of GX|Y is strictly greater than 1. A multi-letter expression for the zero-error capacity of the channel with confusability graph GX|Y is known, and is given by the normalized limit as the blocklength n → 1 of the maximum independent set of the n-fold strong product of GX|Y. This is not generally computable with known methods. In this paper, we look at the zero-error capacity of four multi-user channels: the relay, the multiple-access (MAC), the broadcast (BC), and the interference (IC) channels. As a first step towards finding a multi-letter expression for the capacity of such channels, we find necessary and sufficient conditions under which the zero-error capacity is strictly positive. 
    more » « less