- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004000001000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Devroye, Natasha (5)
-
Asadi, Meysam (3)
-
Chen, Yanying (1)
-
Palacio-Baus, Kenneth (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Asadi, Meysam; Palacio-Baus, Kenneth; Devroye, Natasha (, 2018 International Symposium on Information Theory)
-
Chen, Yanying; Devroye, Natasha (, IEEE Transactions on Information Theory)
-
Asadi, Meysam; Devroye, Natasha (, Communication, Control, and Computing (Allerton), 2017 55th Annual Allerton Conference on)
-
Devroye, Natasha (, Communication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on)Shannon determined that the zero-error capacity of a point-to-point channel whose channel p(y|x) has confusability graph GX|Y is positive if and only if there exist two inputs that are “non-adjacent”, or “non-confusable”. Equivalently, it is non-zero if and only if the independence number of GX|Y is strictly greater than 1. A multi-letter expression for the zero-error capacity of the channel with confusability graph GX|Y is known, and is given by the normalized limit as the blocklength n → 1 of the maximum independent set of the n-fold strong product of GX|Y. This is not generally computable with known methods. In this paper, we look at the zero-error capacity of four multi-user channels: the relay, the multiple-access (MAC), the broadcast (BC), and the interference (IC) channels. As a first step towards finding a multi-letter expression for the capacity of such channels, we find necessary and sufficient conditions under which the zero-error capacity is strictly positive.more » « less
An official website of the United States government
