skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1645648

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This letter presents the design and experimental validation of a real-time image-based feedback control system for metal laser powder bed fusion (LPBF). A coaxial melt pool video stream is used to control laser power in real-time at 2 kHz. Modeling of the melt pool image response to changes in the input laser power is presented. Based on this identified model, a real-time feedback controller is implemented experimentally on a single track and part scales. On a single-track scale, the controller successfully tracks a time-varying melt pool reference. On a part-level scale, the controller successfully regulates the melt pool image signature to the desired reference value, reducing layer-to-layer signal variation and eliminating within-layer signal drift. 
    more » « less
  2. This paper develops a closed-loop approach for ink-jet 3D printing. The control design is based on a distributed model predictive control scheme, which can handle constraints (such as droplet volume) as well as the large-scale nature of the problem. The high resolution of ink-jet 3D printing make centralized methods extremely time-consuming, thus a distributed implementation of the controller is developed. First a graph-based height evolution model that can capture the liquid flow dynamics is proposed. Then, a scalable closed-loop control algorithm is designed based on the model using Distributed MPC, that reduces computation time significantly. The performance and efficiency of the algorithm are shown to outperform open-loop printing and closed-loop printing with existing Centralized MPC methods through simulation results. 
    more » « less