skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1646337

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Strain localization and resulting plasticity and failure play an important role in the evolution of the lithosphere. These phenomena are commonly modeled by Stokes flows with viscoplastic rheologies. The nonlinearities of these rheologies make the numerical solution of the resulting systems challenging, and iterative methods often converge slowly or not at all. Yet accurate solutions are critical for representing the physics. Moreover, for some rheology laws, aspects of solvability are still unknown. We study a basic but representative viscoplastic rheology law. The law involves a yield stress that is independent of the dynamic pressure, referred to as von Mises yield criterion. Two commonly used variants, perfect/ideal and composite viscoplasticity, are compared. We derive both variants from energy minimization principles, and we use this perspective to argue when solutions are unique. We propose a new stress‐velocity Newton solution algorithm that treats the stress as an independent variable during the Newton linearization but requires solution only of Stokes systems that are of the usual velocity‐pressure form. To study different solution algorithms, we implement 2‐D and 3‐D finite element discretizations, and we generate Stokes problems with up to 7 orders of magnitude viscosity contrasts, in which compression or tension results in significant nonlinear localization effects. Comparing the performance of the proposed Newton method with the standard Newton method and the Picard fixed‐point method, we observe a significant reduction in the number of iterations and improved stability with respect to problem nonlinearity, mesh refinement, and the polynomial order of the discretization. 
    more » « less