skip to main content


Search for: All records

Award ID contains: 1649784

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study uses shipborne [R/V Roger Revelle and R/V Mirai ] radar, upper-air, ocean, and surface meteorology datasets from the DYNAMO field campaign to investigate the diurnal cycle (DC) of precipitation over the central Indian Ocean related to two distinct Madden-Julian oscillations (MJOs) observed. This study extends earlier studies on the MJO DC by examining the relationship between the DC of convective organization and the local environment and comparing these results on- and off-equator. During the suppressed phase on-equator, the DC of rain rates exhibited two weak maxima at 15 LT and 01 LT, which was largely controlled by the presence of sub-MCS nonlinear precipitation features (PFs). During the active phase on-equator, MCS nonlinear features dominated the rain volume, and the greatest increase in rain rates occurred between 21-01 LT. This maximum coincided with the maxima in convective available potential energy (CAPE) and sensible heat flux, and the column moistened significantly over night. Off-equator, the environment was much drier and there was little large-scale upward motion as a result of limited deep convection. The DC of rain rates during the active phase off-equator was most similar to the DC observed during the suppressed phase on-equator, while rainfall off-equator during the suppressed phase did not vary much throughout the day. The DC of MCS nonlinear PFs closely resembled the DC of rainfall during both phases off-equator, and the DC of environmental parameters, including sea surface temperature, CAPE, and latent heat flux, was typically much weaker off-equator compared to on-equator. 
    more » « less