Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Garnet–kyanite–staurolite assemblages with large, late porphyroblasts of amphibole form garbenschists in Ordovician volcaniclastic rocks lying immediately south of the Pearya terrane on northernmost Ellesmere Island, Canada. The schist, which together with carbonate olistoliths makes up the Petersen Bay Assemblage (PBA), displays a series of parallel isograds that mark an increase in metamorphic grade over a distance of 10 km towards the contact with Pearya; however, a steep, brittle Cenozoic strike-slip fault with an unknown amount displacement disturbs the earlier accretionary relationship. The late amphibole growth, probably due to fluid ingress, is clear evidence of disequilibrium conditions in the garbenschist. In order to recover the P–T history of the schists, we construct isochemical phase equilibrium models for a nearby garnet–mica schist that escaped the fluid event and compare the results to quartz inclusion in garnet (QuiG) barometry for a garbenschist and the metapelitic garnet schist. Quartz inclusions are confined to garnet cores and the QuiG results, combined with Ti-in-biotite and garnet–biotite thermometry, delineate a prograde path from 480 to 600°C and 0.7 to 0.9 GPa. This path agrees with growth zoning in garnet deduced from X-ray maps of the spessartine component in garnet. The peak conditions obtained from pseudosection modelling using effective bulk composition and the intersection of garnet rim with matrix biotite and white mica isopleths in the metapelite are 665°C at ≤0.85 GPa. Three generations of monazite (I, II and III) were identified by textural characterization, geochemical composition (REE and Y concentrations) and U–Pb ages measured by ion microprobe. Monazite I occurs in the matrix and as inclusions in garnet rims and grew at peak P–T conditions at 397 ± 2 Ma (2σ) from the breakdown of allanite. Monazite II forms overgrowths on matrix Monazite I grains that are oriented parallel to the main schistosity and yield ages of 385 ± 2 Ma. Monazite III, found only in the garbenschist, is 374 ± 6 Ma, which is interpreted as the time of amphibole growth during fluid infiltration at lower temperature and pressure on a clockwise P–T path that remained in the kyanite stability field. These results point to a relatively short (≈12 Myr) Barrovian metamorphic event that affected the schists of the PBA. An obvious heat source is lacking in the adjacent Pearya terrane, but we speculate it was large Devonian plutons—similar to the 390 ± 10 Ma Cape Woods granite located 40 km across strike from the fault—that have been excised by strike-slip. Arc fragments that are correlative to the PBA are low grade; they never saw the heat and were not directly involved in Pearya accretion.more » « less
-
null (Ed.)Ion microprobe U–Pb zircon dating of intermediate to felsic rocks coupled with bulk-rock geochemistry analyses and compared to previously published data shows that the Thores Suite of the Pearya Terrane of northern Ellesmere Island (Arctic Canada) represents an Early Ordovician (c. 490–470 Ma) suite formed in an island arc setting. Interestingly, three out of five dated samples contain abundant xenocrystic zircon that have ages spanning from c. 2690 Ma to c. 520 Ma. The vast majority of xenocrystic zircon are Precambrian in age and typical of Laurentia. The youngest well-pronounced age cluster around 580–570 Ma is inferred to be an expression of the Timanide Orogen, traditionally ascribed to Baltica. This geochronological dataset provides new insight on the origin of the Thores Suite of the Pearya Terrane, which was traditionally thought to be formed due to the M'Clintock orogenic event and commonly treated as independent from Caledonian tectonism. We suggest that the Thores island arc formed on a sliver of continental crust within the Iapetus Ocean. The timing of igneous activity recorded by the Thores Suite is consistent with other island arcs and subduction-related metamorphic units that occur within the Caledonides of northern Scandinavia and Svalbard. Hence, we suggest that the Thores volcanic island arc was closely associated with age equivalent arcs developed within the northern Iapetus Ocean. Its juxtaposition with the other successions of the Pearya Terrane is explained by a large-scale, left lateral, strike-slip system operating along the northeastern margins of Baltica and Laurentia, coeval with the main collision between the two continents. This strike-slip system was responsible for the juxtaposition of multiple terranes with contrasting Precambrian histories that can be traced in the present day High Arctic, e.g. in southwest Svalbard and the Pearya Terrane.more » « less
-
null (Ed.)The northern margin of the Neoproterozoic Timanide Orogen is truncated by Paleozoic deformation of the Caledonian Orogen. Evidence for dispersion of terranes affected by the Timanide Orogen is documented through contemporaneous tectonothermal activity, and by detrital zircon in sedimentary rock from across the Arctic Ocean margins. However, directly tying these terranes to the Caledonide realm is hindered by the paucity of appropriate events in proximal terranes. The Ward Hunt Pluton, a previously undated syenite–monzodiorite intrusion located on Ward Hunt Island, northern Pearya terrane, yields a crystallization age of 542 ± 2 Ma. Trace-element data from the igneous zircon suggest that the pluton intruded older metasedimentary rocks of the terrane as part of a volcanic arc system, indicated by juvenile Hf isotopic signatures and traceelement data. The data support links between the Pearya terrane and other Neoproterozoic–Cambrian arc systems, such as those proposed in Arctic Alaska-Chukota and the Alexander terrane.more » « less
An official website of the United States government
