skip to main content

Search for: All records

Award ID contains: 1650460

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT This work investigated the effect of isophthalate (iso) content in poly(ethylene terephthalate) (PET) materials on its degree of crystallinity (χ%) and mechanical properties. Melt blends were prepared from virgin (0 iso-wt.%) and bottle-grade (1.7 iso-wt.%) PET and subsequently spun into fibers. The mechanical and crystallinity properties were determined using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and uniaxial tensile testing. The crystallinity results determined from DSC and XRD quantified the relationship between iso-content and χ% in the materials. It was found that melt-mixing of different isophthalate grades had a lesser effect on melting temperature (Tm) and χ% than chemically recycled random copolymers of terephthalate and isophthalate. It was further shown that random copolymers of <0.25 iso-wt.% had comparable crystallinity to the virgin high-modulus low-shrink (HMLS) materials. 
    more » « less
  2. null (Ed.)
  3. Introduction of nanoparticulate additives can dramatically impact elastomer mechanical response, with large enhancements in modulus, toughness, and strength. Despite the societal importance of these effects, their mechanistic origin remains unsettled. Here, using a combination of theory and molecular dynamics simulation, we show that low-strain extensional reinforcement of elastomers is driven by a nanoparticulate-jamming-induced suppression in the composite Poisson ratio. This suppression forces an increase in rubber volume with extensional deformation, effectively converting a portion of the rubber's bulk modulus into an extensional modulus. A theory describing this effect is shown to interrelate the Poisson ratio and modulus across a matrix of simulated elastomeric nanocomposites of varying loading and nanoparticle structure. This model provides a design rule for structured nanoparticulates that maximizes elastomer mechanical response via suppression of the composite Poisson ratio. It also positions elastomeric nanocomposites as having a qualitatively different character than Poisson-ratio-matched plastic nanocomposites, where this mechanism is absent. 
    more » « less