skip to main content

Search for: All records

Award ID contains: 1651686

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 2, 2023
  2. This article highlights the utilization of phosphine-containing redox-active ligands for efficient hydrosilylation catalysis. Manganese, iron, cobalt, and nickel precatalysts featuring these chelates have been described and leading activities for carbonyl, carboxylate, and ester C–O bond hydrosilylation have been achieved. Mechanistic studies have provided insight into the importance of phosphine hemilability.
    Free, publicly-accessible full text available November 16, 2022
  3. The electronic structure of a dimeric manganese hydride catalyst supported by β-diketiminate ligands, [( 2,6-iPr2Ph BDI)Mn(μ-H)] 2 , was investigated with density functional theory. A triple bond between the manganese centres was anticipated from simple electron-counting rules; however, calculations revealed Mn–Mn Mayer bond orders of 0.21 and 0.27 for the ferromagnetically-coupled and antiferromagnetically-coupled extremes, respectively. In accordance with experimentally determined Heisenberg exchange coupling constants of −15 ± 0.1 cm −1 (SQUID) and −10.2 ± 0.7 cm −1 (EPR), the calculated J 0 value of −10.9 cm −1 confirmed that the ground state involves antiferromagnetic coupling between high spin Mn( iimore »)-d 5 centres. The effect of steric bulk on the bond order was examined via a model study with the least sterically-demanding version of the β-diketiminate ligand and was found to be negligible. Mixing between metal- and β-diketiminate-based orbitals was found to be responsible for the absence of a metal–metal multiple bond. The bridging hydrides give rise to a relatively close positioning of the metal centres, while bridging atoms possessing 2p orbitals result in longer Mn–Mn distances and more stable dimers. The synthesis and characterization of the bridging hydroxide variant, [( 2,6-iPr2Ph BDI)Mn(μ-OH)] 2 , provides experimental support for these assessments.« less
  4. The manganese hydride dimer, [( 2,6-iPr2Ph BDI)Mn(μ-H)] 2 , was found to mediate nitrile dihydroboration, rendering it the first manganese catalyst for this transformation. Stoichiometric experiments revealed that benzonitrile insertion affords [( 2,6-iPr2Ph BDI)Mn(μ-NCHC 6 H 5 )] 2 en route to N , N -diborylamine formation. Density functional theory calculations reveal the precise mechanism and demonstrate that catalysis is promoted by monomeric species.
  5. N,N-Diborylamines have emerged as promising reagents in organic synthesis; however, their efficient preparation and full synthetic utility have yet to be realized. To address both shortcomings, an effective catalyst for nitrile dihydroboration was sought. Heating CoCl2 in the presence of PyEtPDI afforded the six-coordinate Co(II) salt, [(PyEtPDI)CoCl][Cl]. Upon adding 2 equiv of NaEt3BH, hydride transfer to one chelate imine functionality was observed, resulting in the formation of (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Single-crystal X-ray diffraction and density functional theory calculations revealed that this compound possesses a low-spin Co(II) ground state featuring antiferromagnetic coupling to a singly reduced imino(pyridine) moiety. Importantly, (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co was found tomore »catalyze the dihydroboration of nitriles using HBPin with turnover frequencies of up to 380 h–1 at ambient temperature. Stoichiometric addition experiments revealed that HBPin adds across the Co–Namide bond to generate a hydride intermediate that can react with additional HBPin or nitriles. Computational evaluation of the reaction coordinate revealed that the B–H addition and nitrile insertion steps occur on the antiferromagnetically coupled triplet spin manifold. Interestingly, formation of the borylimine intermediate was found to occur following BPin transfer from the borylated chelate arm to regenerate (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Borylimine reduction is in turn facile and follows the same ligand-assisted borylation pathway. The independent hydroboration of alkyl and aryl imines was also demonstrated at 25 °C. With a series of N,N-diborylamines in hand, their addition to carboxylic acids allowed for the direct synthesis of amides at 120 °C, without the need for an exogenous coupling reagent.« less
  6. The phosphine-substituted α-diimine Ni precursor, ( Ph2PPr DI)Ni , has been found to catalyze alkene hydrosilylation in the presence of Ph 2 SiH 2 with turnover frequencies of up to 124 h −1 at 25 °C (990 h −1 at 60 °C). Moreover, the selective hydrosilylation of allylic and vinylic ethers has been demonstrated, even though ( Ph2PPr DI)Ni is known to catalyze allyl ester C–O bond hydrosilylation. At 70 °C, this catalyst has been found to mediate the hydrosilylation of ten different gem -olefins, with turnover numbers of up to 740 under neat conditions. Prior and current mechanistic observationsmore »suggest that alkene hydrosilylation takes place though a Chalk–Harrod mechanism following phosphine donor dissociation.« less
  7. A (BDI)Mn catalyst has been found to hydrosilylate olefins and the observed selectivity can be attributed to alkene insertion.

  8. The synthesis of alkylphosphine-substituted α-diimine (DI) ligands and their subsequent addition to Ni(COD) 2 allowed for the preparation of ( iPr2PPr DI)Ni and ( tBu2PPr DI)Ni . The solid state structures of both compounds were found to feature a distorted tetrahedral geometry that is largely consistent with the reported structure of the diphenylphosphine-substituted variant, ( Ph2PPr DI)Ni . To explore and optimize the synthetic utility of this catalyst class, all three compounds were screened for benzaldehyde hydrosilylation activity at 1.0 mol% loading over 3 h at 25 °C. Notably, ( Ph2PPr DI)Ni was found to be the most efficient catalystmore »while phenyl silane was the most effective reductant. A broad scope of aldehydes and ketones were then hydrosilylated, and the silyl ether products were hydrolyzed to afford alcohols in good yield. When attempts were made to explore ester reduction, inefficient dihydrosilylation was noted for ethyl acetate and no reaction was observed for several additional substrates. However, when an equimolar solution of allyl acetate and phenyl silane was added to 1.0 mol% ( Ph2PPr DI)Ni , complete ester C–O bond hydrosilylation was observed within 30 min at 25 °C to generate propylene and PhSi(OAc) 3 . The scope of this reaction was expanded to include six additional allyl esters, and under neat conditions, turnover frequencies of up to 990 h −1 were achieved. This activity is believed to be the highest reported for transition metal-catalyzed ester C–O bond hydrosilylation. Proposed mechanisms for ( Ph2PPr DI)Ni -mediated carbonyl and allyl ester C–O bond hydrosilylation are also discussed.« less