skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1652471

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Lithium metal and lithium-rich alloys are high-capacity anode materials that could boost the energy content of rechargeable batteries. However, their development has been hindered by rapid capacity decay during cycling, which is driven by the substantial structural, morphological, and volumetric transformations that these materials and their interfaces experience during charge and discharge. During these transformations, the interplay between chemical/structural changes and solid mechanics plays a defining role in determining electrochemical degradation. This Perspective discusses how chemistry and mechanics are interrelated in influencing the reaction mechanisms, stability, and performance of both lithium metal anodes and alloy anodes. Battery systems with liquid electrolytes and solid-state electrolytes are considered because of the distinct effects of chemo-mechanics in each system. Building on this knowledge, we present a discussion of emerging ideas to control and mitigate chemo-mechanical degradation in these materials to enable translation to commercial systems, which could lead to the development of high-energy batteries that are urgently needed to power our increasingly electrified world. 
    more » « less