- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Riehl, Emily (4)
-
Verity, Dominic (2)
-
Garner, Richard (1)
-
Kędziorek, Magdalena (1)
-
Wattal, Mira (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Riehl, Emily; Verity, Dominic (, Applied Categorical Structures)null (Ed.)
-
Riehl, Emily; Verity, Dominic (, Theory and applications of categories)null (Ed.)In previous work, we introduce an axiomatic framework within which to prove theorems about many varieties of infinite-dimensional categories simultaneously. In this paper, we establish criteria implying that an ∞-category --- for instance, a quasi-category, a complete Segal space, or a Segal category --- is complete and cocomplete, admitting limits and colimits indexed by any small simplicial set. Our strategy is to build (co)limits of diagrams indexed by a simplicial set inductively from (co)limits of restricted diagrams indexed by the pieces of its skeletal filtration. We show directly that the modules that express the universal properties of (co)limits of diagrams of these shapes are reconstructible as limits of the modules that express the universal properties of (co)limits of the restricted diagrams. We also prove that the Yoneda embedding preserves and reflects limits in a suitable sense, and deduce our main theorems as a consequence.more » « less
-
Garner, Richard; Kędziorek, Magdalena; Riehl, Emily (, Journal of Topology)
An official website of the United States government

Full Text Available