Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Chemiluminescence imaging of bioanalytes using spiroadamantane 1,2‐dioxetanes has gained significant attention due to improved signal‐to‐noise ratios and imaging depth compared to excitation‐based probes, as well as their modifiable scaffolds that offer analyte‐specific responses and tunable emissive properties. Among several strategies employed to amplify signals under aqueous conditions and to shift the emission into the bio‐relevant red region, energy transfer to an adjacent fluorophore is a popular and effective method. This Minireview highlights spiroadamantane 1,2‐dioxetane‐based probes that operate via an energy transfer mechanism to detect bioanalytes both in vitro and in vivo. Probes that display both non‐covalent and covalent interactions with fluorophores, as well as their applications in imaging specific analytes will be discussed.more » « less
-
Abstract Azanone (HNO) is a reactive nitrogen species with pronounced biological activity and high therapeutic potential for cardiovascular dysfunction. A critical barrier to understanding the biology of HNO and furthering clinical development is the quantification and real‐time monitoring of its delivery in living systems. Herein, we describe the design and synthesis of the first chemiluminescent probe for HNO,HNOCL‐1, which can detect HNO generated from concentrations of Angeli's salt as low as 138 nmwith high selectivity based on the reaction with a phosphine group to form a self‐cleavable azaylide intermediate. We have capitalized on this high sensitivity to develop a generalizable kinetics‐based approach, which provides real‐time quantitative measurements of HNO concentration at the picomolar level.HNOCL‐1can monitor dynamics of HNO delivery in living cells and tissues, demonstrating the versatility of this method for tracking HNO in living systems.more » « less
An official website of the United States government
