Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract An asymmetric double cantilever beam test was used to determine the ability of carbon nanotubes with varying chemistry along their lengths, that is, diblock nanotubes, to compatibilize the polystyrene/poly(methyl methacrylate) (PS/PMMA) interface. PS molecules were grafted primarily to one of the blocks to cause that block to migrate to the PS phase since otherwise both blocks would prefer to reside in PMMA. Fracture toughnesses increased monotonically with increasing diblock carbon nanotube concentration and maximum values were like those for block copolymer‐reinforced interfaces while single‐chemistry nanotubes showed no reinforcing effect. However, the abrupt increase in fracture toughness with added compatibilizer indicative of a transition to crazing was not found consistent with nanotubes suppressing crazing in homopolymers. Scanning electron microscopy images of the fractured surfaces show agglomerates of carbon nanotubes present which are likely limiting the efficacy of carbon nanotubes at toughening the interface.more » « less
-
Abstract Catalysts consisting of metal particles supported on reducible oxides exhibit promising activity and selectivity for a variety of current and emerging industrial processes. Enhanced catalytic activity can arise from direct contact between the support and the metal or from metal-induced promoter effects on the oxide. Discovering the source of enhanced catalytic activity and selectivity is challenging, with conflicting arguments often presented based on indirect evidence. Here, we separate the metal from the support by a controlled distance while maintaining the ability to promote defects via the use of carbon nanotube hydrogen highways. As illustrative cases, we use this approach to show that the selective transformation of furfural to methylfuran over Pd/TiO2occurs at the Pd-TiO2interface while anisole conversion to phenol and cresol over Cu/TiO2is facilitated by exposed Ti3+cations on the support. This approach can be used to clarify many conflicting arguments in the literature.more » « less
-
The selective activation of renewable carboxylic acids could enable the formation of a variety of highly valuable renewable products, including surfactants, valuable dienes, and renewable hydrogen carriers. A kinetic study is performed to enhance understanding of the selective deoxygenation of carboxylic acid on promoted MoO3 at mild temperatures. Although several studies indicate that deoxygenation of oxygenated biomass-derived compounds on MoO3 occurs via a reverse Mars−van Krevelen mechanism, this study suggests that the deoxygenation of pentanoic acid (PA) on an oxygen vacancy can also be explained by a Langmuir−Hinshelwood mechanism. A detailed analysis of the experimental data indicates that the incorporation of Pt on MoO3 shifts the reaction order with respect to hydrogen from 1 to 0.5 at a low partial pressure of PA. We reveal that the rate-determining step (RDS) shifts upon the incorporation of Pt from H2 dissociation to H addition to adsorbed acid molecules. We further illustrate how the RDS can shift as a function of PA coverage. The inhibition effect of PA and its possible causes are discussed for both MoO3 and 0.05 wt % Pt/MoO3 catalysts. Here, we decouple promoter effects from the creation of highly active sites located at the Pt/MoO3 interface. The nature of the active site involved upon Pt incorporation is also studied by separating Pt from MoO3 at a controlled distance using carbon nanotubes as hydrogen bridges, confirming that the kinetically relevant role of Pt is to serve as a promoter of the MoO3.more » « less
An official website of the United States government
