skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1653992

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Encapsulated microbubbles (EMBs) are widely used to enhance contrast in ultrasound sonography and are finding increasing use in biomedical therapies such as drug/gene delivery and tissue ablation. EMBs consist of a gas core surrounded by a stabilizing shell made of various materials, including polymers, lipids and proteins. We propose a novel model for a spherical EMB that utilizes a statistically-based continuum theory based on transient networks to simulate the encapsulating material. The use of transient network theory provides a general framework that allows a variety of viscoelastic shell materials to be modeled, including purely elastic solids or viscous fluids. This approach permits macroscopic continuum quantities – such as stress, elastic energy and entropy – to be calculated locally based on the network configuration at a given location. The model requires a minimum number of parameters that include the concentration of network elements, and the rates of attachment and detachment of the elements to and from the network. Using measured properties for a phospholipid bilayer, the model closely reproduces the experimentally-measured radial response of an ultrasonically-driven, lipid-coated microbubble. The model can be readily extended to large nonspherical EMB deformations, which are important in many biomedical applications. 
    more » « less