Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63–161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86–152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12–166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00–120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.more » « less
-
ZHANG, Feng (Ed.)Oxygen is an important and often limiting reagent of a firefly’s bioluminescent chemical reaction. Therefore, the development of the tracheal system and its subsequent modification to support the function of firefly light organs are key to understanding this process. We employ micro-CT scanning, 3D rendering, and confocal microscopy to assess the abdominal tracheal system in Photinus pyralis from the external spiracles to the light organ’s internal tracheal brush, a feature named here for the first time. The abdominal spiracles in firefly larvae and pupae are of the biforous type, with a filter apparatus and appear to have an occlusor muscle to restrict airflow. The first abdominal spiracle in the adult firefly is enlarged and bears an occlusor muscle, and abdominal spiracles two through eight are small, with a small atrium and bilobed closing apparatus. Internal tracheal system features, including various branches, trunks, and viscerals, were homologized across life stages. In adults, the sexually dimorphic elaboration and increase in volume associated with tracheal features of luminous segments emphasizes the importance of gas exchange during the bioluminescent process.more » « less
-
Petalacmis Olivier, 1908 is a poorly known genus of firefly endemic to South America and is currently the only member of the subfamily Lampyrinae, tribe Lampyrini known to occur on the continent. Here, we describe a new species, Petalacmis triplehorni sp. nov. from Bolivia and compare it to the two other described species in the genus. A key to Petalacmis species based on male traits, as well as illustrations of morphological features, are given in detail for the first time. We present unique, previously neglected traits of Petalacmis species and compare them to other Lampyrinae.more » « less
An official website of the United States government
