skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1656465

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Burghardt, G.M. (Ed.)
    Several species of stalk-eyed flies exhibit exaggerated sexual dimorphism where females favor males with longer eyespans. Longer eyespan increases a fly’s moment of inertia, and may, therefore, impact flight behavior and fitness, specifically maneuverability and predator evasion. However, these putative costs may be ameliorated by co-selection for compensatory traits, as flies with longer eyespans tend to have larger thoraces and wings, which allows them to perform turns similar to flies with shorter eyespans. Furthermore, the capacity to compensate for a potentially costly ornament may not be fixed across the life-history of the adult stage, as stalk-eyed flies achieve sexual maturity at 3-4 weeks of age, accompanied by significant growth of reproductive tissues and organs. Thus, growth of the abdomen and body mass over time may impose constraints on flight performance that may affect whether an adult reaches the age of reproductive viability. The purpose of this study was to investigate the flight performance of stalk-eyed flies and its relationship to body morphology and development. The flight performance of 1-to-30 day oldTeleopsis dalmanni(n=124) andDiasemopsis meigenii(n=83) were assessed by presenting normoxic, variable-density mixtures of heliox (O2, N2and He) in 10% increments ranging from air to pure heliox; the least-dense gas allowing flight represented maximal performance. Flight kinematics were analyzed using high-speed (5930fps) videography. Immediately following flight assessment, flies were euthanized, photographed, dissected and weighed. In both species, total body mass, thorax and abdominal mass increased across age. Wing kinematics and maximal flight capacity were associated with thorax mass, and increased with age as flies became heavier. Although flies with longer eyespans were indeed heavier, they had larger wings and thoraces; however, maximal flight capacity and kinematics were generally independent of eyespan. Thus, bearing long eye-stalks did not impair flight performance, nor did the increase in mass attributable to reproductive maturation. Instead, variation in flight performance appears associated with the development of the flight motor, and improved ratio of thorax-to-total mass, across age. 
    more » « less
  2. Suarez, Andrew V. (Ed.)
    The pavement ant Tetramorium immigrans is a widespread and prevalent species in temperate urban areas. Yet, despite this commonness, it was only in 2017 that T. immigrans was differentiated from other members of its complex which had largely been regarded under the umbrella species “T. caespitum”. As a result, past literature treats multiple species synonymously while current papers continue to cite T. caespitum findings as authoritative on T. immigrans. This review delineates what is known about T. immigrans while placing this information in a natural history context where possible. Given the state of our knowledge, it is likely a semi-arid open-field specialist which has multiple fortuitous “preadaptations”to human disturbance, and which has spread across Europe and North America in tight synanthropy as a result. It recruits rapidly to food, whereby making use of spotty urban resources, and is comparatively self-compatible as a species, allowing it to live at high densities where it is the dominant ant. However, it appears to have a comparatively mild impact on both human activity and biodiversity. Some future avenues of research are discussed concerning this widely distributed ant which is a convenient and interesting study system. 
    more » « less
  3. Briffa, Mark (Ed.)
    Abstract Animals in nature seldom use their maximum performance abilities, likely in part due to context-dependent differences in performance motivation. Despite interest in the factors affecting performance expression, the physiological mechanisms underlying variation in performance motivation are poorly understood. We manipulated levels of the biogenic amine octopamine (OA) to test the hypothesis that OA drives motivation to express maximum bite force in male house crickets. We also tested the effect of antenna removal on bite force given prior evidence of potential links among antennaectomy, aggression, and OA. We found that administration of an OA antagonist, epinastine, significantly decreases realized maximum bite force, as does antenna removal. In addition, the performance decrement induced by antennaectomy is abolished by administration of excess OA, and that rescue effect is itself nullified by the simultaneous administration of epinastine. These data show that OA is an important mediator of performance in insects, and thus of performance motivation, and potentially a promising candidate for the short term manipulation of performance. 
    more » « less
  4. Blenau, Wolfgang (Ed.)
    Despite the conserved function of aggression across taxa in obtaining critical resources such as food and mates, serotonin’s (5-HT) modulatory role on aggressive behavior appears to be largely inhibitory for vertebrates but stimulatory for invertebrates. However, critical gaps exist in our knowledge of invertebrates that need to be addressed before definitively stating opposing roles for 5-HT and aggression. Specifically, the role of 5-HT receptor subtypes are largely unknown, as is the potential interactive role of 5-HT with other neurochemical systems known to play a critical role in aggression. Similarly, the influence of these systems in driving sex differences in aggressive behavior of invertebrates is not well understood. Here, we investigated these questions by employing complementary approaches in a novel invertebrate model of aggression, the stalk-eyed fly. A combination of altered social conditions, pharmacological manipulation and 5-HT2 receptor knockdown by siRNA revealed an inhibitory role of this receptor subtype on aggression. Additionally, we provide evidence for 5-HT2’s involvement in regulating neuropeptide F activity, a suspected inhibitor of aggression. However, this function appears to be stage-specific, altering only the initiation stage of aggressive conflicts. Alternatively, pharmacologically increasing systemic concentrations of 5-HT significantly elevated the expression of the neuropeptide tachykinin, which did not affect contest initiation but instead promoted escalation via production of high intensity aggressive behaviors. Notably, these effects were limited solely to males, with female aggression and neuropeptide expression remaining unaltered by any manipulation that affected 5-HT. Together, these results demonstrate a more nuanced role for 5-HT in modulating aggression in invertebrates, revealing an important interactive role with neuropeptides that is more reminiscent of vertebrates. The sex-differences described here also provide valuable insight into the evolutionary contexts of this complex behavior. 
    more » « less