Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Spiralia is a large, ancient and diverse clade of animals, with a conserved early developmental program but diverse larval and adult morphologies. One trait shared by many spiralians is the presence of ciliary bands used for locomotion and feeding. To learn more about spiralian-specific traits we have examined the expression of 20 genes with protein motifs that are strongly conserved within the Spiralia, but not detectable outside of it. Here, we show that two of these are specifically expressed in the main ciliary band of the molluscTritia(also known asIlyanassa). Their expression patterns in representative species from five more spiralian phyla—the annelids, nemerteans, phoronids, brachiopods and rotifers—show that at least one of these,lophotrochin, has a conserved and specific role in particular ciliated structures, most consistently in ciliary bands. These results highlight the potential importance of lineage-specific genes or protein motifs for understanding traits shared across ancient lineages.more » « less
-
John Davey; Lisa Nagy; Elizabeth Jockusch; Julia Bowsher (Ed.)Clade-specific (a.k.a. lineage-specific) genes are very common and found at all taxonomic levels and in all clades examined. They can arise by duplication of previously existing genes, which can involve partial truncations or combinations with other protein domains or regulatory sequences. They can also evolve de novo from non-coding sequences, leading to potentially truly novel protein domains. Finally, since clade-specific genes are generally defined by lack of sequence homology with other proteins, they can also arise by sequence evolution that is rapid enough that previous sequence homology can no longer be detected. In such cases, where the rapid evolution is followed by constraint, we consider them to be ontologically non-novel but likely novel at a functional level. In general, clade-specific genes have received less attention from biologists but there are increasing numbers of fascinating examples of their roles in important traits. Here we review some selected recent examples, and argue that attention to clade-specific genes is an important corrective to the focus on the conserved developmental regulatory toolkit that has been the habit of evo-devo as a field. Finally, we discuss questions that arise about the evolution of clade-specific genes, and how these might be addressed by future studies. We highlight the hy- pothesis that clade-specific genes are more likely to be involved in synapomorphies that arose in the stem group where they appeared, compared to other genes.more » « less
-
Gastropod shell morphologies are famously diverse but generally share a common geometry, the logarithmic coil. Variations on this morphology have been modeled mathematically and computationally but the developmental biology of shell morphogenesis remains poorly understood. Here we characterize the organization and growth patterns of the shell-secreting epithelium of the larval shell of the basket whelkTritia(also known asIlyanassa). Despite the larval shell’s relative simplicity, we find a surprisingly complex organization of the shell margin in terms of rows and zones of cells. We examined cell division patterns with EdU incorporation assays and found two growth zones within the shell margin. In the more anterior aperture growth zone, we find that inferred division angles are biased to lie parallel to the shell edge, and these divisions occur more on the margin’s left side. In the more posterior mantle epithelium growth zone, inferred divisions are significantly biased to the right, relative to the anterior–posterior axis. These growth zones, and the left–right asymmetries in cleavage patterns they display, can explain the major modes of shell morphogenesis at the level of cellular behavior. In a gastropod with a different coiling geometry,Planorbellasp., we find similar shell margin organization and growth zones asTritia, but different left–right asymmetries than we observed in the helically coiled shell ofTritia. These results indicate that differential growth patterns in the mantle edge epithelium contribute to shell shape in gastropod shells and identify cellular mechanisms that may vary to generate shell diversity in evolution.more » « less
An official website of the United States government

Full Text Available