- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Beloozerova, Irina N. (2)
-
Dounskaia, Natalia (1)
-
Marlinski, Vladimir (1)
-
Stout, Erik E. (1)
-
Zubair, Humza N. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The activity of motor cortex is necessary for accurate stepping on a complex terrain. How this activity is generated remains unclear. The goal of this study was to clarify the contribution of signals from the ventrolateral thalamus (VL) to formation of locomotion-related activity of motor cortex during vision-independent and vision-dependent locomotion. In two cats, we recorded the activity of neurons in layer V of motor cortex as cats walked on a flat surface and a horizontal ladder. We reversibly inactivated ~10% of the VL unilaterally with the glutamatergic transmission antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and analyzed how this affected the activity of motor cortex neurons. We examined neuronal subpopulations with somatosensory receptive fields on different segments of the forelimb and pyramidal tract projecting neurons (PTNs). We found that the VL contribution to the locomotion-related activity of motor cortex is very powerful and has both excitatory and inhibitory components. The magnitudes of both the excitatory and inhibitory contributions fluctuate over the step cycle and depend on locomotion task. On a flat surface, the VL contributes more excitation to the shoulder- and elbow-related neurons than the wrist/paw-related cells. The VL excites the shoulder-related group the most during the transition from stance to swing phase, while most intensively exciting the elbow-related group during the transition from swing to stance. The VL contributes more excitation for the fast- than slow-conducting PTNs. Upon transition to vision-dependent locomotion on the ladder, the VL contribution increases more for the wrist/paw-related neurons and slow-conducting PTNs. NEW & NOTEWORTHY How the activity of motor cortex is generated and the roles that different inputs to motor cortex play in formation of response properties of motor cortex neurons during movements remain unclear. This is the first study to characterize the contribution of the input from the ventrolateral thalamus (VL), the main subcortical input to motor cortex, to the activity of motor cortex neurons during vision-independent and vision-dependent locomotion.more » « less
-
Zubair, Humza N.; Stout, Erik E.; Dounskaia, Natalia; Beloozerova, Irina N. (, Journal of Neurophysiology)
An official website of the United States government
