skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1657245

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The utility of telerobotic systems is driven in large part by the quality of feedback they provide to the operator. While the dynamic interaction between a robot and the environment can often be sensed or modeled, the dynamic coupling at the human-robot interface is often overlooked. Improving dexterous manipulation through telerobots will require careful consideration of human haptic perception as it relates to human exploration dynamics at the telerobotic interface. In this manuscript, we use exploration velocity as a means of controlling the operator's exploration dynamics, and present results from two stiffness discrimination experiments designed to investigate the effects of exploration velocity on stiffness perception. The results indicate that stiffness percepts vary differently for different exploration velocities on an individual level, however, no consistent trends were found across all participants. These results suggest that exploration dynamics can affect the quality of haptic interactions through telerobotic interfaces, and also reflect the need to study the underlying mechanisms that cause our perception to vary with our choice of exploration strategy. 
    more » « less