skip to main content


Search for: All records

Award ID contains: 1657602

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile vision systems would benefit from the ability to situationally sacrifice image resolution to save system energy when imaging detail is unnecessary. Unfortunately, any change in sensor resolution leads to a substantial pause in frame delivery -- as much as 280 ms. Frame delivery is bottlenecked by a sequence of reconfiguration procedures and memory management in current operating systems before it resumes at the new resolution. This latency from reconfiguration impedes the adoption of otherwise beneficial resolution-energy tradeoff mechanisms. We propose Banner as a media framework that provides a rapid sensor resolution reconfiguration service as a modification to common media frameworks, e.g., V4L2. Banner completely eliminates the frame-to-frame reconfiguration latency (226 ms to 33 ms), i.e., removing the frame drop during sensor resolution reconfiguration. Banner also halves the end-to-end resolution reconfiguration latency (226 ms to 105 ms). This enables a more than 49% reduction of system power consumption by allowing continuous vision applications to reconfigure the sensor resolution to 480p compared with downsampling from 1080p to 480p, as measured in a cloud-based offloading workload running on a Jetson TX2 board. As a result, Banner unlocks unprecedented capabilities for mobile vision applications to dynamically reconfigure sensor resolutions to balance the energy efficiency and task accuracy tradeoff. 
    more » « less
  2. Advances in vision processing have ignited a proliferation of mobile vision applications, including augmented reality. However, limited by the inability to rapidly reconfigure sensor operation for performance-efficiency tradeoffs, high power consumption causes vision applications to drain the device's battery. To explore the potential impact of enabling rapid reconfiguration, we use a case study around marker-based pose estimation to understand the relationship between image frame resolution, task accuracy, and energy efficiency. Our case study motivates that to balance energy efficiency and task accuracy, the application needs to dynamically and frequently reconfigure sensor resolution. To explore the latency bottlenecks to sensor resolution reconfiguration, we define and profile the end-to-end reconfiguration latency and frame-to-frame latency of changing capture resolution on a Google LG Nexus 5X device. We identify three major sources of sensor resolution reconfiguration latency in current Android systems: (i) sequential configuration patterns, (ii) expensive system calls, and (iii) imaging pipeline delay. Based on our intuitions, we propose a redesign of the Android camera system to mitigate the sources of latency. Enabling smooth transitions between sensor configurations will unlock new classes of adaptive-resolution vision applications. 
    more » « less