Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Given the rapidly changing landscapes of habitats across the globe, a sound understanding of host-associated microbial communities and the ecoevolutionary forces that shape them is needed to assess general organismal adaptability. Knowledge of the symbiotic endogenous microbiomes of most reptilian species worldwide remains limited. We sampled gut microbiomes of geckos spanning nine species and four genera in the Philippines to (i) provide baseline data on gut microbiota in these host species, (ii) test for significant associations between host phylogenetic relationships and observed microbial assemblages, potentially indicative of phylosymbiosis, and (iii) identify correlations between multiple ecoevolutionary factors (e.g. species identity, habitat tendencies, range extents, and maximum body sizes) and gut microbiomes in Philippine gekkonids. We recovered no significant association between interspecific host genetic distances and observed gut microbiomes, providing limited evidence for phylosymbiosis in this group. Philippine gekkonid microbiomes were associated most heavily with host species identity, though marked variation among conspecifics at distinct sampling sites indicates that host locality influences gut microbiomes as well. Interestingly, individuals grouped as widespread and microendemic regardless of host species identity displayed significant differences in alpha and beta diversity metrics examined, likely driven by differences in rare OTU presence between groups. These results provide much needed insight in host-associated microbiomes in wild reptiles and the ecoevolutionary forces that structure such communities.more » « less
-
Abstract Cryptic ecologies, the Wallacean Shortfall of undocumented species’ geographical ranges and the Linnaean Shortfall of undescribed diversity, are all major barriers to conservation assessment. When these factors overlap with drivers of extinction risk, such as insular distributions, the number of threatened species in a region or clade may be underestimated, a situation we term ‘cryptic extinction risk’. The genusLepidodactylusis a diverse radiation of insular and arboreal geckos that occurs across the western Pacific. Previous work onLepidodactylusshowed evidence of evolutionary displacement around continental fringes, suggesting an inherent vulnerability to extinction from factors such as competition and predation. We sought to (1) comprehensively review status and threats, (2) estimate the number of undescribed species, and (3) estimate extinction risk in data deficient and candidate species, inLepidodactylus. From our updated IUCN Red List assessment, 60% of the 58 recognized species are threatened (n = 15) or Data Deficient (n = 21), which is higher than reported for most other lizard groups. Species from the smaller and isolated Pacific islands are of greatest conservation concern, with most either threatened or Data Deficient, and all particularly vulnerable to invasive species. We estimated 32 undescribed candidate species and linear modelling predicted that an additional 18 species, among these and the data deficient species, are threatened with extinction. Focusing efforts to resolve the taxonomy and conservation status of key taxa, especially on small islands in the Pacific, is a high priority for conserving this remarkably diverse, yet poorly understood, lizard fauna. Our data highlight how cryptic ecologies and cryptic diversity combine and lead to significant underestimation of extinction risk.more » « less
-
Global amphibian populations are declining rapidly, due largely to infectious diseases such as chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). The Herpetology Department at the Sam Noble Museum has screened for Bd prevalence among amphibian communities across Oklahoma for over five years, providing ongoing data about the disease’s prevalence and distribution. Recently, the museum partnered with other Oklahomans through a citizen science project allowing participants to sample their local amphibian communities for Bd. Our project targeted K–12 students in Oklahoma to promote curiosity in science and to foster an interest in pursuing career paths in science, technology, engineering, and mathematics (STEM). The multi-year baseline citizen science dataset we obtained shows a lower Bd prevalence compared to samples collected from trained researchers. In this study, we juxtapose the two datasets and make observations on the feasibility of the citizen science program. Results from the program suggest that kit return rates were average for a project of this scale, and many participants could correctly identify amphibian species. Our findings indicate that the citizen science initiative is successful in increasing statewide amphibian disease sampling range and heightening the public’s awareness of this global amphibian epidemic.more » « less
-
The study of animal personality is a growing field that has applications for welfare of animals living in captive settings. We measured personality traits (activity, exploration, and neophobia) in Texas horned lizards (Phrynosoma cornutum) living in human care before they were released to their natal habitat as part of a headstart program. We found evidence of consistent inter-individual differences in activity and exploration, but not neophobia. We also identified a positive correlation between activity and exploration, such that more active lizards were also more likely to explore a novel environment. These results suggest that Texas horned lizards have individual differences in response to their environment, which can inform husbandry decisions. Extensions of this work could also have implications for conservation of Texas horned lizards and for headstart programs focused on reptiles.more » « less
-
null (Ed.)The gastrointestinal tract (GIT) of vertebrates contains a series of organs beginning with the mouth and ending with the anus or cloacal opening. Each organ represents a unique environment for resident microorganisms. Due to their simple digestive anatomy, snakes are good models for studying microbiome variation along the GIT. Cloacal sampling captures the majority of the microbial diversity found in the GIT of snakes—yet little is known about the oral microbiota of snakes. Most research on the snake mouth and gut microbiota are limited to studies of a single species or captive-bred individuals. It therefore remains unclear how a host’s life history, diet, or evolutionary history correlate with differences in the microbial composition within the mouths and guts of wild snakes. We sampled the mouth and gut microbial communities from three species of Asian venomous snakes and utilized 16S rRNA microbial inventories to test if host phylogenetic and ecological differences correlate with distinct microbial compositions within the two body sites. These species occupy three disparate habitat types: marine, semi-arboreal, and arboreal, our results suggest that the diversity of snake mouth and gut microbial communities correlate with differences in both host ecology and phylogeny.more » « less
-
null (Ed.)Recent studies have highlighted the underestimated diversity of the genus Diploderma Hallowell, 1861 in the Hengduan Mountain Region in Southwest China, but much of the region remains poorly surveyed for reptile diversity. In this study we describe two new species of Diploderma from the upper Jinsha and middle Yalong River Valley, based on evaluations of morphological, genetic, and distribution data. The two new species are morphologically most similar to D. angustelinea and D. vela, but they can be diagnosed from both recognized taxa and all remaining congeners by a suite of morphological features, particularly the distinct coloration of gular spots. Additionally, both new species either render other recognized species paraphyletic or are allopatric with respect to their morphologically similar congeners. Furthermore, we rediscover D. brevicaudum in the wild for the first time, which was known from historical museum specimens only. We estimate the phylogenetic position of D. brevicaudum within the genus Diploderma based on mitochondrial genealogy, and we provide an expanded diagnosis and comparisons against closely related congeners and provide a detailed description of coloration in life based on newly collected specimens. Our discoveries of the new Diploderma species further highlight the urgent conservation needs of the currently neglected hot-dry valley ecosystems in the Hengduan Mountain Region of China.more » « less
An official website of the United States government

Full Text Available