skip to main content

Search for: All records

Award ID contains: 1659534

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster , we detected an RNA, previously thought to be noncoding, called male-specific abdominal ( msa ). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a “micropeptide” (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.
  2. Bone morphogenetic protein (BMP) signaling regulates many different developmental and homeostatic processes in metazoans. The BMP pathway is conserved in Caenorhabditis elegans, and is known to regulate body size and mesoderm development. We have identified the C. elegans smoc-1 (Secreted MOdular Calcium-binding protein-1) gene as a new player in the BMP pathway. smoc-1(0) mutants have a small body size, while overexpression of smoc-1 leads to a long body size and increased expression of the RAD-SMAD (reporter acting downstream of SMAD) BMP reporter, suggesting that SMOC-1 acts as a positive modulator of BMP signaling. Using double-mutant analysis, we showed that SMOC-1 antagonizes the function of the glypican LON-2 and acts through the BMP ligand DBL-1 to regulate BMP signaling. Moreover, SMOC-1 appears to specifically regulate BMP signaling without significant involvement in a TGFβ-like pathway that regulates dauer development. We found that smoc-1 is expressed in multiple tissues, including cells of the pharynx, intestine, and posterior hypodermis, and that the expression of smoc-1 in the intestine is positively regulated by BMP signaling. We further established that SMOC-1 functions cell nonautonomously to regulate body size. Human SMOC1 and SMOC2 can each partially rescue the smoc-1(0) mutant phenotype, suggesting that SMOC-1's function in modulatingmore »BMP signaling is evolutionarily conserved. Together, our findings highlight a conserved role of SMOC proteins in modulating BMP signaling in metazoans.« less