skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1660346

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 26, 2026
  2. Hajek, Ann (Ed.)
    Abstract Bark beetles and root weevils can impact forests through tree death on landscape scales. Recently, subterranean termites have been linked to these beetles via the presence of bluestain fungi (Ascomycota: Ophiostomataceae), which are vectored to trees by beetles. However, only a small subset of bluestain species have been examined. Here, we tested whether termite-bluestain association patterns in the field reflect termite feeding preference in laboratory choice trials. We documented the presence of four bluestain fungi (Leptographium procerum (W.B. Kendr.), L. terebrantis (Barras & Perry), Grosmannia huntii (Rob.-Jeffr.), and G. alacris (T.A. Duong, Z.W. de Beer & M.J. Wingf.) in the roots of 2,350 loblolly pine trees in the southeastern United States and whether termites were present or absent on these roots and paired this with laboratory choice feeding trials. Termites were found 2.5-fold on tree roots with at least one bluestain fungus present than tree roots without bluestain fungi. Although termites in this study and others were associated with L. procerum, L. terebrantis, and marginally G. huntii, termites only showed preferential feeding on wood inoculated with G. huntii in laboratory trials. This suggests that increased termite presence on wood with bluestain fungi may be driven by factors other than increased wood palatability. Termites could thus disproportionately affect wood turnover rates for specific pools (e.g., bark beetle and root weevil attacked trees) and in some cases (e.g., G. huntii) accelerate wood decomposition. This study supports the growing evidence that the association between subterranean termites and bluestain fungi is spatially and taxonomically widespread. 
    more » « less
  3. Disturbance-induced mortality events in forest ecosystems generate significant hotspots in biogeochemical cycles. These events occur sporadically across the landscape and contribute to large sources of error in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. The balance between production of stable soil organic matter and respiration from decomposing biomass greatly influences whether temperate forests remain modest carbon sinks or are transformed into carbon sources. In 2015, a field experiment to mimic pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Enhanced fluxes from dying trees primed surrounding soils while decreased tree water use provided additional soil moisture to create biogeochemical hotspots, which could lead to accelerated carbon decomposition and mineralization rates. 
    more » « less