skip to main content


Search for: All records

Award ID contains: 1661129

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The axial musculature of fishes has historically been characterized as the powerhouse for explosive swimming behaviors. However, recent studies show that some fish also use their ‘swimming’ muscles to generate over 90% of the power for suction feeding. Can the axial musculature achieve high power output for these two mechanically distinct behaviors? Muscle power output is enhanced when all of the fibers within a muscle shorten at optimal velocity. Yet, axial locomotion produces a mediolateral gradient of muscle strain that should force some fibers to shorten too slowly and others too fast. This mechanical problem prompted research into the gearing of fish axial muscle and led to the discovery of helical fiber orientations that homogenize fiber velocities during swimming, but does such a strain gradient also exist and pose a problem for suction feeding? We measured muscle strain in bluegill sunfish,Lepomis macrochirus,and found that suction feeding produces a gradient of longitudinal strain that, unlike the mediolateral gradient for locomotion, occurs along the dorsoventral axis. A dorsoventral strain gradient within a muscle with fiber architecture shown to counteract a mediolateral gradient suggests that bluegill sunfish should not be able to generate high power outputs from the axial muscle during suction feeding—yet prior work shows that they do, up to 438 W kg−1. Solving this biomechanical paradox may be critical to understanding how many fishes have co-opted ‘swimming’ muscles into a suction feeding powerhouse.

     
    more » « less
  2. ABSTRACT Suction feeding in ray-finned fishes involves powerful buccal cavity expansion to accelerate water and food into the mouth. Previous XROMM studies in largemouth bass (Micropterus salmoides), bluegill sunfish (Lepomis macrochirus) and channel catfish (Ictalurus punctatus) have shown that more than 90% of suction power in high performance strikes comes from the axial musculature. Thus, the shape of the axial muscles and skeleton may affect suction feeding mechanics. Royal knifefish (Chitala blanci) have an unusual postcranial morphology, with a ventrally flexed vertebral column and relatively large mass of epaxial muscle. Based on their body shape, we hypothesized that royal knifefish would generate high power strikes by utilizing large neurocranial elevation, vertebral column extension and epaxial shortening. As predicted, C. blanci generated high suction expansion power compared with the other three species studied to date (up to 160 W), which was achieved by increasing both the rate of volume change and the intraoral subambient pressure. The large epaxial muscle (25% of body mass) shortened at high velocities to produce large neurocranial elevation and vertebral extension (up to 41 deg, combined), as well as high muscle mass-specific power (up to 800 W kg−1). For the highest power strikes, axial muscles generated 95% of the power, and 64% of the axial muscle mass consisted of the epaxial muscles. The epaxial-dominated suction expansion of royal knifefish supports our hypothesis that postcranial morphology may be a strong predictor of suction feeding biomechanics. 
    more » « less
  3. ABSTRACT Fishes possess an impressive repertoire of feeding and locomotor behaviors that in many cases rely on the same power source: the axial musculature. As both functions employ different skeletal systems, head versus body, integrating these functions would likely require modular motor control. Although there have been many studies of motor control in feeding or locomotion in fishes, only one study to date has examined both functions in the same individuals. To characterize bilateral motor control of the epaxial musculature in feeding and locomotion, we measured muscle activity and shortening in bluegill sunfish (Lepomis macrochirus) using electromyography and sonomicrometry. We found that sunfish recruit epaxial regions in a dorsal-to-ventral manner to increase feeding performance, such that high-performance feeding activates all the epaxial musculature. In comparison, sunfish seemed to activate all three epaxial regions irrespective of locomotor performance. Muscle activity was present on both sides of the body in nearly all feeding and locomotor behaviors. Feeding behaviors used similar activation intensities on the two sides of the body, whereas locomotor behaviors consistently used higher intensities on the side undergoing muscle shortening. In all epaxial regions, fast-starts used the highest activation intensities, although high-performance suction feeding occasionally showed near-maximal intensity. Finally, active muscle volume was positively correlated with the peak rate of body flexion in feeding and locomotion, indicating a continuous relationship between recruitment and performance. A comparison of these results with recent work on largemouth bass (Micropterus salmoides) suggests that centrarchid fishes use similar motor control strategies for feeding, but interspecific differences in peak suction-feeding performance are determined by active muscle volume. 
    more » « less
  4. Selection for increased muscle mass in domestic turkeys has resulted in muscles twice the size of those found in wild turkeys. This study characterizes muscle structural changes as well as functional differences in muscle performance associated with selection for increased muscle mass. We compared peak isometric force production, whole muscle and individual fiber cross-sectional area (CSA), connective tissue collagen concentration and structure of the lateral gastrocnemius (LG) muscle in wild and adult domestic turkeys. We also explored changes with age between juvenile and adult domestic turkeys. We found that the domestic turkey’s LG muscle can produce the same force per cross-sectional area as a wild turkey; however, due to scaling, domestic adults produce less force per unit body mass. Domestic turkey muscle fibers were slightly smaller in CSA (3802 ± 2223 μm2) than those of the wild turkey (4014 ± 1831 μm2, p = 0.013), indicating that the absolutely larger domestic turkey muscles are a result of an increased number of smaller fibers. Collagen concentration in domestic turkey muscle (4.19 ± 1.58 μg hydroxyproline/mg muscle) was significantly lower than in the wild turkeys (6.23 ± 0.63 μg/mg, p = 0.0275), with visible differences in endomysium texture, observed via scanning electron microscopy. Selection for increased muscle mass has altered the structure of the LG muscle; however, scaling likely contributes more to hind limb functional differences observed in the domestic turkey. 
    more » « less
  5. ABSTRACT Some fishes rely on large regions of the dorsal (epaxial) and ventral (hypaxial) body muscles to power suction feeding. Epaxial and hypaxial muscles are known to act as motors, powering rapid mouth expansion by shortening to elevate the neurocranium and retract the pectoral girdle, respectively. However, some species, like catfishes, use little cranial elevation. Are these fishes instead using the epaxial muscles to forcefully anchor the head, and if so, are they limited to lower-power strikes? We used X-ray imaging to measure epaxial and hypaxial length dynamics (fluoromicrometry) and associated skeletal motions (XROMM) during 24 suction feeding strikes from three channel catfish ( Ictalurus punctatus ). We also estimated the power required for suction feeding from oral pressure and dynamic endocast volume measurements. Cranial elevation relative to the body was small (<5 deg) and the epaxial muscles did not shorten during peak expansion power. In contrast, the hypaxial muscles consistently shortened by 4–8% to rotate the pectoral girdle 6–11 deg relative to the body. Despite only the hypaxial muscles generating power, catfish strikes were similar in power to those of other species, such as largemouth bass ( Micropterus salmoides ), that use epaxial and hypaxial muscles to power mouth expansion. These results show that the epaxial muscles are not used as motors in catfish, but suggest they position and stabilize the cranium while the hypaxial muscles power mouth expansion ventrally. Thus, axial muscles can serve fundamentally different mechanical roles in generating and controlling cranial motion during suction feeding in fishes. 
    more » « less
  6. Synopsis Locomotion in most tetrapods involves coordinated efforts between appendicular and axial musculoskeletal systems, where interactions between the limbs and the ground generate vertical (GV), horizontal (GH), and mediolateral (GML) ground-reaction forces that are transmitted to the axial system. Snakes have a complete absence of external limbs and represent a fundamental shift from this perspective. The axial musculoskeletal system of snakes is their primary structure to exert, transmit, and resist all motive and reaction forces for propulsion. Their lack of limbs makes them particularly dependent on the mechanical interactions between their bodies and the environment to generate the net GH they need for forward locomotion. As organisms that locomote on their bellies, the forces that enable the various modes of snake locomotion involve two important structures: the integument and the ribs. Snakes use the integument to contact the substrate and produce a friction-reservoir that exceeds their muscle-induced propulsive forces through modulation of scale stiffness and orientation, enabling propulsion through variable environments. XROMM work and previous studies suggest that the serially repeated ribs of snakes change their cross-sectional body shape, deform to environmental irregularities, provide synergistic stabilization for other muscles, and differentially exert and transmit forces to control propulsion. The costovertebral joints of snakes have a biarticular morphology, relative to the unicapitate costovertebral joints of other squamates, that appears derived and not homologous with the ancestral bicapitate ribs of Amniota. Evidence suggests that the biarticular joints of snakes may function to buttress locomotor forces, similar to other amniotes, and provide a passive mechanism for resisting reaction forces during snake locomotion. Future comparisons with other limbless lizard taxa are necessary to tease apart the mechanics and mechanisms that produced the locomotor versatility observed within Serpentes. 
    more » « less
  7. null (Ed.)
    Synopsis Most predatory ray-finned fishes swallow their food whole, which can pose a significant challenge, given that prey items can be half as large as the predators themselves. How do fish transport captured food from the mouth to the stomach? Prior work indicates that, in general, fish use the pharyngeal jaws to manipulate food into the esophagus, where peristalsis is thought to take over. We used X-Ray Reconstruction of Moving Morphology to track prey transport in channel catfish (Ictalurus punctatus). By reconstructing the 3D motions of both the food and the catfish, we were able to track how the catfish move food through the head and into the stomach. Food enters the oral cavity at high velocities as a continuation of suction and stops in the approximate location of the branchial basket before moving in a much slower, more complex path toward the esophagus. This slow phase coincides with little motion in the head and no substantial mouth opening or hyoid depression. Once the prey is in the esophagus, however, its transport is surprisingly tightly correlated with gulping motions (hyoid depression, girdle retraction, hypaxial shortening, and mouth opening) of the head. Although the transport mechanism itself remains unknown, to our knowledge, this is the first description of synchrony between cranial expansion and esophageal transport in a fish. Our results provide direct evidence of prey transport within the esophagus and suggest that peristalsis may not be the sole mechanism of esophageal transport in catfish. 
    more » « less