skip to main content


Search for: All records

Award ID contains: 1662290

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Pyrrolysine (Pyl, O) exists in nature as the 22ndproteinogenic amino acid. Despite being a fundamental building block of proteins, studies of Pyl have been hindered by the difficulty and inefficiency of both its chemical and biological syntheses. Here, we improve Pyl biosynthesis via rational engineering and directed evolution of the entire biosynthetic pathway. To accommodate toxicity of Pyl biosynthetic genes inEscherichia coli, we also develop Alternating Phage Assisted Non-Continuous Evolution (Alt-PANCE) that alternates mutagenic and selective phage growths. The evolved pathway provides 32-fold improved yield of Pyl-containing reporter protein compared to the rationally engineered ancestor. Evolved PylB mutants are present at up to 4.5-fold elevated levels inside cells, and show up to 2.2-fold increased protease resistance. This study demonstrates that Alt-PANCE provides a general approach for evolving proteins exhibiting toxic side effects, and further provides an improved pathway capable of producing substantially greater quantities of Pyl-proteins inE. coli.

     
    more » « less
  2. Abstract Motivation

    Advances in experimental and imaging techniques have allowed for unprecedented insights into the dynamical processes within individual cells. However, many facets of intracellular dynamics remain hidden, or can be measured only indirectly. This makes it challenging to reconstruct the regulatory networks that govern the biochemical processes underlying various cell functions. Current estimation techniques for inferring reaction rates frequently rely on marginalization over unobserved processes and states. Even in simple systems this approach can be computationally challenging, and can lead to large uncertainties and lack of robustness in parameter estimates. Therefore we will require alternative approaches to efficiently uncover the interactions in complex biochemical networks.

    Results

    We propose a Bayesian inference framework based on replacing uninteresting or unobserved reactions with time delays. Although the resulting models are non-Markovian, recent results on stochastic systems with random delays allow us to rigorously obtain expressions for the likelihoods of model parameters. In turn, this allows us to extend MCMC methods to efficiently estimate reaction rates, and delay distribution parameters, from single-cell assays. We illustrate the advantages, and potential pitfalls, of the approach using a birth–death model with both synthetic and experimental data, and show that we can robustly infer model parameters using a relatively small number of measurements. We demonstrate how to do so even when only the relative molecule count within the cell is measured, as in the case of fluorescence microscopy.

    Availability and implementation

    Accompanying code in R is available at https://github.com/cbskust/DDE_BD.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract

    As synthetic biocircuits become more complex, distributing computations within multi-strain microbial consortia becomes increasingly beneficial. However, designing distributed circuits that respond predictably to variation in consortium composition remains a challenge. Here we develop a two-strain gene circuit that senses and responds to which strain is in the majority. This involves a co-repressive system in which each strain produces a signaling molecule that signals the other strain to down-regulate production of its own, orthogonal signaling molecule. This co-repressive consortium links gene expression to ratio of the strains rather than population size. Further, we control the cross-over point for majority via external induction. We elucidate the mechanisms driving these dynamics by developing a mathematical model that captures consortia response as strain fractions and external induction are varied. These results show that simple gene circuits can be used within multicellular synthetic systems to sense and respond to the state of the population.

     
    more » « less
  4. null (Ed.)
    Abstract Ligand-inducible genetic systems are the mainstay of synthetic biology, allowing gene expression to be controlled by the presence of a small molecule. However, ‘leaky’ gene expression in the absence of inducer remains a persistent problem. We developed a leak dampener tool that drastically reduces the leak of inducible genetic systems while retaining signal in Escherichia coli. Our system relies on a coherent feedforward loop featuring a suppressor tRNA that enables conditional readthrough of silent non-sense mutations in a regulated gene, and this approach can be applied to any ligand-inducible transcription factor. We demonstrate proof-of-principle of our system with the lactate biosensor LldR and the arabinose biosensor AraC, which displayed a 70-fold and 630-fold change in output after induction of a fluorescence reporter, respectively, without any background subtraction. Application of the tool to an arabinose-inducible mutagenesis plasmid led to a 540-fold change in its output after induction, with leak decreasing to the level of background mutagenesis. This study provides a modular tool for reducing leak and improving the fold-induction within genetic circuits, demonstrated here using two types of biosensors relevant to cancer detection and genetic engineering. 
    more » « less