skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1662442

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop recursions for computing the mean and variance of the number of pooled tests needed by the halving scheme to determine the disease positive members of a population. It is assumed that each population member is independently positive with probability p, that the individual blood samples can be pooled to test whether or not at least one member of that pooled group is positive, and that a positive tested group is then split in half and the process continued. 
    more » « less
  2. Abstract We consider the Bernoulli bandit problem where one of the arms has win probability α and the others β, with the identity of the α arm specified by initial probabilities. With u = max(α, β), v = min(α, β), call an arm with win probability u a good arm. Whereas it is known that the strategy of always playing the arm with the largest probability of being a good arm maximizes the expected number of wins in the first n games for all n , we conjecture that it also stochastically maximizes the number of wins. That is, we conjecture that this strategy maximizes the probability of at least k wins in the first n games for all k , n . The conjecture is proven when k = 1, and k = n , and when there are only two arms and k = n - 1. 
    more » « less