skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1662757

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    To this day, the maximum clique problem remains a computationally challenging problem. Indeed, despite researchers’ best efforts, there exist unsolved benchmark instances with 1,000 vertices. However, relatively simple algorithms solve real-life instances with millions of vertices in a few seconds. Why is this the case? Why is the problem apparently so easy in many naturally occurring networks? In this paper, we provide an explanation. First, we observe that the graph’s clique number ω is very near to the graph’s degeneracy d in most real-life instances. This observation motivates a main contribution of this paper, which is an algorithm for the maximum clique problem that runs in time polynomial in the size of the graph, but exponential in the gap [Formula: see text] between the clique number ω and its degeneracy-based upper bound d+1. When this gap [Formula: see text] can be treated as a constant, as is often the case for real-life graphs, the proposed algorithm runs in time [Formula: see text]. This provides a rigorous explanation for the apparent easiness of these instances despite the intractability of the problem in the worst case. Further, our implementation of the proposed algorithm is actually practical—competitive with the best approaches from the literature. 
    more » « less
  3. null (Ed.)
    Two nodes of a wireless network may not be able to communicate with each other directly, perhaps because of obstacles or insufficient signal strength. This necessitates the use of intermediate nodes to relay information. Often, one designates a (preferably small) subset of them to relay these messages (i.e., to serve as a virtual backbone for the wireless network), which can be seen as a connected dominating set (CDS) of the associated graph. Ideally, these communication paths should be short, leading to the notion of a latency-constrained CDS. In this paper, we point out several shortcomings of a previously studied formalization of a latency-constrained CDS and propose an alternative one. We introduce an integer programming formulation for the problem that has a variable for each node and imposes the latency constraints via an exponential number of cut-like inequalities. Two nice properties of this formulation are that (1) it applies when distances are hop-based and when they are weighted and (2) it easily generalizes to ensure fault tolerance. We provide a branch-and-cut implementation of this formulation and compare it with a new polynomial-size formulation. Computational experiments demonstrate the superiority of the cut-like formulation. We also study related questions from computational complexity, such as approximation hardness, and answer an open problem regarding the fault diameter of graphs. 
    more » « less
  4. null (Ed.)
  5. In the article “A linear‐size zero‐one programming model for the minimum spanning tree problem in planar graphs” (Networks39(1) (2002), 53‐60), Williams introduced an extended formulation for the spanning tree polytope of a planar graph. This formulation is remarkably small (using onlyO(n) variables and constraints) and remarkably strong (defining an integral polytope). In this note, we point out that Williams' formulation, as originally stated, is incorrect. Specifically, we construct a binary feasible solution to Williams' formulation that does not represent a spanning tree. Fortunately, there is a simple fix, which is to restrict the choice of the root vertices in the primal and dual spanning trees, whereas Williams explicitly allowed them to be chosen arbitrarily. The same flaw and fix apply to a subsequent formulation of Williams (“A zero‐one programming model for contiguous land acquisition.” Geographical Analysis34(4) (2002), 330‐349). 
    more » « less