skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1662791

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While monazite (LaPO4) does not flash sinter even at high fields of 1130 V/cm and temperatures of 1450°C, composite systems of 8YSZ–LaPO4and Al2O3–LaPO4have been found to more readily flash sinter. 8YSZ added to LaPO4greatly lowered the furnace temperature for flash to 1100°C using a field of only 250 V/cm. In these experiments,‐Al2O3alone also did not flash sinter at 1450°C even with high fields of 1130 V/cm, but composites of Al2O3–LaPO4powders flash sintered at 900‐1080 V/cm at 1450°C. Alumina–monazite (Al2O3–LaPO4) composites with compositions ranging from 25 vol% to 75 vol% Al2O3were flash sintered with current limits from 2 to 25 mA/mm2. Microstructures were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A eutectic microstructure was observed to form in all flash sintered Al2O3–LaPO4composites. With higher power (higher current limits), eutectic structures with regular lamellar regions were found to coexist in the channeled region (where both the current and the temperature were the highest) with large hexagonal‐shaped‐Al2O3grains (up to 75 m) and large irregular LaPO4grains. With lower power (lower current limits), an irregular eutectic microstructure was dominant, and there was minimal abnormal grain growth. These results indicate that Al2O3–LaPO4is a eutectic‐forming system and the eutectic temperature was reached locally during flash sintering in regions. These eutectic microstructures with lamellar dimensions on the scale of 100 nm offer potential for improved mechanical properties. 
    more » « less
  2. In situ X-ray diffraction measurements at the Advanced Photon Source show that alpha-Al2O3 and MgAl2O4 react nearly instantaneously and completely, and nearly completely to form single-phase high-alumina spinel during voltage-to-current type of flash sintering experiments. The initial sample was constituted from powders of alpha-Al2O3, MgAl2O4 spinel, and cubic 8 mol% Y2O3-stabilized ZrO2 (8YSZ) mixed in equal volume fractions, the spinel to alumina molar ratio being 1:1.5. Specimen temperature was measured by thermal expansion of the platinum standard. These measurements correlated well with a black-body radiation model, using appropriate values for the emissivity of the constituents. Temperatures of 1600-1736 degrees C were reached during the flash, which promoted the formation of alumina-rich spinel. In a second set of experiments, the flash was induced in a current-rate method where the current flowing through the specimen is controlled and increased at a constant rate. In these experiments, we observed the formation of two different compositions of spinel, MgO center dot 3Al(2)O(3) and MgO center dot 1.5Al(2)O(3), which evolved into a single composition of MgO center dot 2.5Al(2)O(3) as the current continued to increase. In summary, flash sintering is an expedient way to create single-phase, alumina-rich spinel. 
    more » « less