skip to main content


Search for: All records

Award ID contains: 1662875

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A highly water‐ and air‐stable Fe(II) complex with the quinol‐containing macrocyclic ligand H4qp4 reacts with H2O2to yield Fe(III) complexes with less highly chelating forms of the ligand that have either one or twopara‐quinones. The reaction increases theT1‐weighted relaxivity over four‐fold, enabling the complex to detect H2O2using clinical MRI technology. The iron‐containing sensor differs from its recently characterized manganese analog, which also detects H2O2, in that it is the oxidation of the metal center, rather than the ligand, that primarily enhances the relaxivity.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H 2 O 2 , [Mn( H2qp1 )(MeCN)] 2+ and [Mn( H4qp2 )Br 2 ], could also catalytically degrade superoxide. Subsequently, [Zn( H2qp1 )(OTf)] + was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O 2 ˙ − to O 2 and H 2 O 2 , raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O 2 ˙ − in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization mass spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O 2 ˙ − to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2 , we detect Mn( iii )-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn( iii )-hydroperoxo compound, and what is formally a Mn( iv )-oxo species with the monoquinolate/mono- para -quinone form of H4qp2 . With the monoquinolic H2qp1 , we observe a Mn( ii )-superoxo ↔ Mn( iii )-peroxo intermediate with the oxidized para -quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O 2 ˙ − oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity ( k cat ∼ 10 8 M −1 s −1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn( ii ) porphyrin-based SOD mimics. 
    more » « less
  4. null (Ed.)