skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1662992

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In computational mechanics, multiple models are often present to describe a physical system. While Bayesian model selection is a helpful tool to compare these models using measurement data, it requires the computationally expensive estimation of a multidimensional integral — known as the marginal likelihood or as the model evidence (i.e., the probability of observing the measured data given the model) — over the multidimensional parameter domain. This study presents efficient approaches for estimating this marginal likelihood by transforming it into a one-dimensional integral that is subsequently evaluated using a quadrature rule at multiple adaptively-chosen iso-likelihood contour levels. Three different algorithms are proposed to estimate the probability mass at each adapted likelihood level using samples from importance sampling, stratified sampling, and Markov chain Monte Carlo (MCMC) sampling, respectively. The proposed approach is illustrated — with comparisons to Monte Carlo, nested, and MultiNest sampling — through four numerical examples. The first, an elementary example, shows the accuracies of the three proposed algorithms when the exact value of the marginal likelihood is known. The second example uses an 11-story building subjected to an earthquake excitation with an uncertain hysteretic base isolation layer with two models to describe the isolation layer behavior. The third example considers flow past a cylinder when the inlet velocity is uncertain. Based on the these examples, the method with stratified sampling is by far the most accurate and efficient method for complex model behavior in low dimension, particularly considering that this method can be implemented to exploit parallel computation. In the fourth example, the proposed approach is applied to heat conduction in an inhomogeneous plate with uncertain thermal conductivity modeled through a 100 degree-of-freedom Karhunen–Loève expansion. The results indicate that MultiNest cannot efficiently handle the high-dimensional parameter space, whereas the proposed MCMC-based method more accurately and efficiently explores the parameter space. The marginal likelihood results for the last three examples — when compared with the results obtained from standard Monte Carlo sampling, nested sampling, and MultiNest algorithm — show good agreement. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026