skip to main content

Search for: All records

Award ID contains: 1664652

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The catalytic system generated in-situ from the tetranuclear Ru–H complex with a catechol ligand (1/L1) was found to be effective for the direct deaminative coupling of two primary amines to form secondary amines. The catalyst 1/L1 was highly chemoselective for promoting the coupling of two different primary amines to afford unsymmetric secondary amines. The analogous coupling of aniline with primary amines formed aryl-substituted secondary amines. The treatment of aniline-d7 with 4-methoxybenzylamine led to the coupling product with significant deuterium incorporation on CH2 (18% D). The most pronounced carbon isotope effect was observed on the -carbon of the product isolated from the coupling reaction of 4-methoxybenzylamine (C(1) = 1.015(2)). Hammett plot was constructed from measuring the rates of the coupling reaction of 4-methoxyaniline with a series of para-substituted benzylamines 4-X-C6H4CH2NH2 (X = OMe, Me, H, F, CF3). ( = -0.79 ± 0.1). A plausible mechanistic scheme has been proposed for the coupling reaction on the basis of these results. The catalytic coupling method provides an operationally simple and chemoselective synthesis of secondary amine products without using any reactive reagents or forming wasteful byproducts.