- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0000000006000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Tiep, Pham Huu (5)
-
Navarro, Gabriel (3)
-
Giannelli, Eugenio (1)
-
Guralnick, Robert M (1)
-
HUNG, NGUYEN NGOC (1)
-
Herzig, Florian (1)
-
Isaacs, I.M. (1)
-
Kleshchev, Alexander (1)
-
Olsson, Jørn B. (1)
-
Shalev, Aner (1)
-
Späth, Britta (1)
-
TIEP, PHAM HUU (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shalev, Aner; Tiep, Pham Huu (, Bulletin of the London Mathematical Society)
-
Guralnick, Robert M; Herzig, Florian; Tiep, Pham Huu (, Journal of the European Mathematical Society)
-
Isaacs, I.M.; Navarro, Gabriel; Olsson, Jørn B.; Tiep, Pham Huu (, Journal of Algebra)
-
Navarro, Gabriel; Späth, Britta; Tiep, Pham Huu (, Proceedings of the London Mathematical Society)
-
HUNG, NGUYEN NGOC; TIEP, PHAM HUU (, Mathematical Proceedings of the Cambridge Philosophical Society)Abstract The classical Itô-Michler theorem on character degrees of finite groups asserts that if the degree of every complex irreducible character of a finite group G is coprime to a given prime p , then G has a normal Sylow p -subgroup. We propose a new direction to generalize this theorem by introducing an invariant concerning character degrees. We show that if the average degree of linear and even-degree irreducible characters of G is less than 4/3 then G has a normal Sylow 2-subgroup, as well as corresponding analogues for real-valued characters and strongly real characters. These results improve on several earlier results concerning the Itô-Michler theorem.more » « less
An official website of the United States government

Full Text Available