skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1665255

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. X-ray reflectivity was used to study the several-nanometer-thick “crowded” layers that form at the interfaces between a planar electrode and concentrated solutions of ionic liquids. The ionic liquid [P14,6,6,6]+[NTf2]− was dissolved in either strongly polar propylene carbonate or weakly polar dimethyl carbonate. In the range of 19–100 vol % ionic liquid, between working electrode potentials +2 and +2.75 V, uniform 2–7 nm thick interfacial layers were observed. These layers are not pure anions but contain three to five times as many anions as cations and about the same percentage of solvent as the bulk solution. On the other side of the layer, the density is that of the bulk solution. These features are inconsistent with a picture of the crowded layer as a region of pure, close-packed counterions. Not only the layer thickness but also the charge density decrease with increasing dilution at any given applied voltage. This appears to indicate, counterintuitively, that a thinner layer with lower net charge density will screen an electric field as effectively as a thicker layer with higher charge density. 
    more » « less