skip to main content


Search for: All records

Award ID contains: 1665427

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report the application of our fragment‐based quantum chemistry model MIM (Molecules‐In‐Molecules) with electrostatic embedding. The method is termed “EE‐MIM (ElectrostaticallyEmbeddedMolecules‐In‐Molecules)” and accounts for the missing electrostatic interactions in the subsystems resulting from fragmentation. Point charges placed at the atomic positions are used to represent the interaction of each subsystem with the rest of the molecule with minimal increase in the computational cost. We have carefully calibrated this model on a range of different sizes of clusters containing up to 57 water molecules. The fragmentation methods have been applied with the goal of reproducing the unfragmented total energy at the MP2/6‐311G(d,p) level. Comparative analysis has been carried out between MIM and EE‐MIM to gauge the impact of electrostatic embedding. Performance of several different parameters such as the type of charge and levels of fragmentation are analyzed for the prediction of absolute energies. The use of background charges in subsystem calculations improves the performance of both one‐ and two‐layer MIM while it is noticeably important in the case of one‐layer MIM. Embedded charges for two‐layer MIM are obtained from a full system calculation at the low‐level. For one‐layer MIM, in the absence of a full system calculation, two different types of embedded charges, namely, Geometry dependent (GD) and geometry independent (GI) charges, are used. A self‐consistent procedure is employed to obtain GD charges. We have further tested our method on challenging charged systems with stronger intermolecular interactions, namely, protonated ammonia clusters (containing up to 30 ammonia molecules). The observations are similar to water clusters with improved performance using embedded charges. Overall, the performance of NPA charges as embedded charges is found to be the best.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. The redox potential is a powerful thermodynamic and kinetic tool used to predict numerous chemical and biochemical mechanisms. However, despite the improving predictive power of density functional theory (DFT), chemically accurate theoretical redox potentials are often difficult to achieve with DFT. For example, calculated redox potentials are sensitive to density functional choice and often fall short of the desired accuracy. Thus, ranges of errors for computed redox potentials between different density functionals can become quite large. The current study presents a cost-effective protocol that utilizes effective error cancellation schemes in order to accurately predict the redox potentials of a wide range of organic molecules. This computational protocol, called CBH-Redox, is an extension of the connectivity-based hierarchy (CBH) method, and produces thermochemical data with near-G4 accuracy. Herein, we test the CBH-Redox protocol against both experimental and G4 reference values and compare these results to DFT alone. Considering 46 C, O, N, F, Cl, and S atom-containing molecules, when using the CBH-Redox correction scheme, the MAEs for all eight density functionals tested are within the 0.09 V target accuracy versus both experiment and G4. Moreover, CBH-Redox achieves an impressive accuracy, with a MAE of 0.05 V or below when compared to G4 for six of the eight density functionals tested. In addition, when the CBH correction is applied, the error range across all functionals tested decreases from 0.12 V to about 0.05 V versus G4, and from 0.13 V to 0.04 V versus experiment. 
    more » « less