skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1700031

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Switching from organic to aqueous solvents for battery electrode processing is desirable due to both safety and cost advantages. Lithium iron phosphate (LFP) is considered a cathode material for aqueous processing due to its demonstrated chemical compatibility with water, in addition to its favorable cost, safety, electrochemical performance, and environmental advantages as a battery active material. All research on LFP stability in water has been conducted in a scenario where LFP is aged in stagnant water, or surrounded by water when confined within a composite electrode. However, a much accelerated degradation in the electrochemical performance of LFP when it is in contact with water and exposed to mechanical agitation is demonstrated. Changes to LFP are probed using a combination of materials characterization methods. Although there are no significant changes to the bulk particle structure and morphology, significant particle surface damage and compositional modifications are observed. These results suggest that the systems where LFP is exposed to agitation in an aqueous environment, such as in aqueous battery electrode processing or in aqueous slurry electrodes, need to be carefully investigated for potential changes to the LFP surface environment under relevant processing conditions. 
    more » « less