Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is a vast theory of the asymptotic behavior of orthogonal polynomials with respect to a measure on R \mathbb {R} and its applications to Jacobi matrices. That theory has an obvious affine invariance and a very special role for ∞ \infty . We extend aspects of this theory in the setting of rational functions with poles on R ¯ = R ∪ { ∞ } \overline {\mathbb {R}} = \mathbb {R} \cup \{\infty \} , obtaining a formulation which allows multiple poles and proving an invariance with respect to R ¯ \overline {\mathbb {R}} -preserving Möbius transformations. We obtain a characterization of Stahl–Totik regularity of a GMP matrix in terms of its matrix elements; as an application, we give a proof of a conjecture of Simon – a Cesàro–Nevai property of regular Jacobi matrices on finite gap sets.more » « less
An official website of the United States government
