- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Nagle, Brendan (3)
-
Churchill, Gregory (1)
-
Rödl, Vojtěch (1)
-
Schacht, Mathias (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Szemerédi 's Regularity Lemma is a powerful tool in graph theory. It asserts that all large graphs admit bounded partitions of their edge sets, most classes of which consist of uniformly distributed edges. The original proof of this result was nonconstructive, and a constructive proof was later given by Alon, Duke, Lefmann, Rödl, and Yuster. Szemerédi's Regularity Lemma was extended to hypergraphs by various authors. Frankl and Rödl gave one such extension in the case of 3‐uniform hypergraphs, which was later extended tok‐uniform hypergraphs by Rödl and Skokan. W.T. Gowers gave another such extension, using a different concept of regularity than that of Frankl, Rödl, and Skokan. Here, we give a constructive proof of a regularity lemma for hypergraphs.more » « less
-
Churchill, Gregory; Nagle, Brendan (, European Journal of Combinatorics)null (Ed.)
-
Nagle, Brendan (, SIAM Journal on Discrete Mathematics)
An official website of the United States government
