Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $$\mathbb{CP}^{n}$$ , for $$k\geqslant n$$ , with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $$\mathbb{C}P^{n}$$ ( $$n$$ -dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $$x_{1}x_{2}\ldots x_{n+1}=0$$ . By localizing, we deduce that the (fully) wrapped Fukaya category of the $$n$$ -dimensional pair of pants is equivalent to the derived category of $$x_{1}x_{2}\ldots x_{n+1}=0$$ . We also prove similar equivalences for finite abelian covers of the $$n$$ -dimensional pair of pants.more » « less
-
In his work on deformation quantization of algebraic varieties Kontsevich introduced the notion of algebroid as a certain generalization of a sheaf of algebras. We construct algebroids which are given locally by NC-smooth thickenings in the sense of Kapranov, over two classes of smooth varieties: the bases of miniversal families of vector bundles on projective curves, and the bases of miniversal families of quiver representations.more » « less
An official website of the United States government
