skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1700814

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract We study two kinds of categorical traces of (monoidal) dg categories, with particular interest in categories of Soergel bimodules. First, we explicitly compute the usual Hochschild homology, or derived vertical trace, of the category of Soergel bimodules in arbitrary types. Secondly, we introduce the notion of derived horizontal trace of a monoidal dg category and compute the derived horizontal trace of Soergel bimodules in type $$A$$. As an application we obtain a derived annular Khovanov–Rozansky link invariant with an action of full twist insertion, and thus a categorification of the HOMFLY-PT skein module of the solid torus. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. We give an explicit recursive description of the Hilbert series and Gröbner bases for the family of quadratic ideals defining the jet schemes of a double point. We relate these recursions to the Rogers-Ramanujan identity and prove a conjecture of the second author, Oblomkov and Rasmussen. 
    more » « less