skip to main content


Search for: All records

Award ID contains: 1701440

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The recent demonstration of a real-time direct imaging radio interferometry correlator represents a new capability in radio astronomy. However, wide-field imaging with this method is challenging since wide-field effects and array non-coplanarity degrade image quality if not compensated for. Here, we present an alternative direct imaging correlation strategy using a direct Fourier transform (DFT), modelled as a linear operator facilitating a matrix multiplication between the DFT matrix and a vector of the electric fields from each antenna. This offers perfect correction for wide field and non-coplanarity effects. When implemented with data from the Long Wavelength Array (LWA), it offers comparable computational performance to previously demonstrated direct imaging techniques, despite having a theoretically higher floating point cost. It also has additional benefits, such as imaging sparse arrays and control over which sky coordinates are imaged, allowing variable pixel placement across an image. It is in practice a highly flexible and efficient method of direct radio imaging when implemented on suitable arrays. A functioning electric field direct imaging architecture using the DFT is presented, alongside an exploration of techniques for wide-field imaging similar to those in visibility-based imaging, and an explanation of why they do not fit well to imaging directly with the digitized electric field data. The DFT imaging method is demonstrated on real data from the LWA telescope, alongside a detailed performance analysis, as well as an exploration of its applicability to other arrays. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract Epoch of Reionisation (EoR) data analysis requires unprecedented levels of accuracy in radio interferometer pipelines. We have developed an imaging power spectrum analysis to meet these requirements and generate robust 21 cm EoR measurements. In this work, we build a signal path framework to mathematically describe each step in the analysis, from data reduction in the Fast Holographic Deconvolution (FHD) package to power spectrum generation in the ε ppsilon package. In particular, we focus on the distinguishing characteristics of FHD/ ε ppsilon: highly accurate spectral calibration, extensive data verification products, and end-to-end error propagation. We present our key data analysis products in detail to facilitate understanding of the prominent systematics in image-based power spectrum analyses. As a verification to our analysis, we also highlight a full-pipeline analysis simulation to demonstrate signal preservation and lack of signal loss. This careful treatment ensures that the FHD/ ε ppsilon power spectrum pipeline can reduce radio interferometric data to produce credible 21 cm EoR measurements. 
    more » « less
  4. Abstract The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories. 
    more » « less