skip to main content


Search for: All records

Award ID contains: 1702231

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Carbon isotope minima were a ubiquitous feature in the mid-depth (1.5–2.5 km) Atlantic during Heinrich Stadial 1 (HS1, 14.5–17.5 kyr BP) and the Younger Dryas (YD, 11.6–12.9 kyr BP), with the most likely driver being collapse of the Atlantic Meridional Overturning Circulation (AMOC). Negative carbon isotope anomalies also occurred throughout the surface ocean and atmosphere, but their timing relative to AMOC collapse and the underlying drivers have remained unclear. Here we evaluate the lead-lag relationship between AMOC variability and surface oceanδ13C signals using high resolution benthic and planktonic stable isotope records from two Brazil Margin cores (located at 1.8 km and 2.1 km water depth). In each case, the decrease in benthicδ13C during HS1 leads planktonicδ13C by 800 ± 200 years. Because the records are based on the same samples, the relative timing is constrained by the core stratigraphy. Our results imply that AMOC collapse initiates a chain of events that propagates through the oceanic carbon cycle in less than 1 kyr. Direct comparison of planktonic foraminiferal and atmospheric records implies a portion of the surface oceanδ13C signal can be explained by temperature-dependent equilibration with a13C-depleted atmosphere, with the remainder due to biological productivity, input of carbon from the abyss, or reduced air-sea equilibration.

     
    more » « less
  2. Abstract

    The last deglaciation (~20–10 kyr BP) was characterized by a major shift in Earth's climate state, when the global mean surface temperature rose ~4 °C and the concentration of atmospheric CO2increased ~80 ppmv. Model simulations suggest that the initial 30 ppmv rise in atmospheric CO2may have been driven by reduced efficiency of the biological pump or enhanced upwelling of carbon‐rich waters from the abyssal ocean. Here we evaluate these hypotheses using benthic foraminiferal B/Ca (a proxy for deep water [CO32−]) from a core collected at 1,100‐m water depth in the Southwest Atlantic. Our results imply that [CO32−] increased by 22 ± 2 μmol/kg early in Heinrich Stadial 1, or a decrease in ΣCO2of approximately 40 μmol/kg, assuming there were no significant changes in alkalinity. Our data imply that remineralized phosphate declined by approximately 0.3 μmol/kg during Heinrich Stadial 1, equivalent to 40% of the modern remineralized signal at this location. Because tracer inversion results indicate remineralized phosphate at the core site reflects the integrated effect of export production in the sub‐Antarctic, our results imply that biological productivity in the Atlantic sector of the Southern Ocean was reduced early in the deglaciation, contributing to the initial rise in atmospheric CO2.

     
    more » « less