- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Blue, Logan (2)
-
Traynor, Patrick (2)
-
Vargas, Luis (2)
-
Abdullah, Hadi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Voice interfaces are increasingly becoming integrated into a variety of Internet of Things (IoT) devices. Such systems can dramatically simplify interactions between users and devices with limited displays. Unfortunately voice interfaces also create new opportunities for exploitation. Specifically any sound-emitting device within range of the system implementing the voice interface (e.g., a smart television, an Internet-connected appliance, etc) can potentially cause these systems to perform operations against the desires of their owners (e.g., unlock doors, make unauthorized purchases, etc). We address this problem by developing a technique to recognize fundamental differences in audio created by humans and electronic speakers. We identify sub-bass over-excitation, or the presence of significant low frequency signals that are outside of the range of human voices but inherent to the design of modern speakers, as a strong differentiator between these two sources. After identifying this phenomenon, we demonstrate its use in preventing adversarial requests, replayed audio, and hidden commands with a 100%/1.72% TPR/FPR in quiet environments. In so doing, we demonstrate that commands injected via nearby audio devices can be effectively removed by voice interfaces.more » « less
-
Blue, Logan; Abdullah, Hadi; Vargas, Luis; Traynor, Patrick (, Proceedings of the 2018 on Asia Conference on Computer and Communications Security)Voice controlled interfaces have vastly improved the usability of many devices (e.g., headless IoT systems). Unfortunately, the lack of authentication for these interfaces has also introduced command injection vulnerabilities - whether via compromised IoT devices, television ads or simply malicious nearby neighbors, causing such devices to perform unauthenticated sensitive commands is relatively easy. We address these weaknesses with Two Microphone Authentication (2MA), which takes advantage of the presence of multiple ambient and personal devices operating in the same area. We develop an embodiment of 2MA that combines approximate localization through Direction of Arrival (DOA) techniques with Robust Audio Hashes (RSHs). Our results show that our 2MA system can localize a source to within a narrow physical cone (< 30◦) with zero false positives, eliminate replay attacks and prevent the injection of inaudible/hidden commands. As such, we dramatically increase the difficulty for an adversary to carry out such attacks and demonstrate that 2MA is an effective means of authenticating and localizing voice commands.more » « less
An official website of the United States government
