Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Creating modern software inevitably requires using application programming interfaces (APIs). While software developers can sometimes use APIs by simply copying and pasting code examples, a lack of robust knowledge of how an API works can lead to defects, complicate software maintenance, and limit what someone can express with an API. Prior work has uncovered the many ways that API documentation fails to be helpful, though rarely describes precisely why. We present a theory of robust API knowledge that attempts to explain why, arguing that effective understanding and use of APIs depends on three components of knowledge: (1) the domain concepts the API models along with terminology, (2) the usage patterns of APIs along with rationale, and (3) facts about an API’s execution to support reasoning about its runtime behavior. We derive five hypotheses from this theory and present a study to test them. Our study investigated the effect of having access to these components of knowledge, finding that while learners requested these three components of knowledge when they were not available, whether the knowledge helped the learner use or understand the API depended on the tasks and likely the relevance and quality of the specific information provided. The theory and our evidence in support of its claims have implications for what content API documentation, tutorials, and instruction should contain and the importance of giving the right information at the right time, as well as what information API tools should compute, and even how APIs should be designed. Future work is necessary to both further test and refine the theory, as well as exploit its ideas for better instructional design.more » « less
-
Prior work on novice programmers' self-regulation have shown it to be inconsistent and shallow, but trainable through direct instruction. However, prior work has primarily studied self-regulation retrospectively, which relies on students to remember how they regulated their process, or in laboratory settings, limiting the ecological validity of findings. To address these limitations, we investigated 31 novice programmers' self-regulation in situ over 10 weeks. We had them to keep journals about their work and later had them to reflect on their journaling. Through a series of qualitative analyses of journals and survey responses, we found that all participants monitored their process and evaluated their work, that few interpreted the problems they were solving or adapted prior solutions. We also found that some students self-regulated their programming in many ways, while others in almost none. Students reported many difficulties integrating reflection into their work; some were completely unaware of their process, some struggled to integrate reflection into their process, and others found reflection conflicted with their work. These results suggest that self-regulation during programming is highly variable in practice, and that teaching self-regulation skills to improve programming outcomes may require differentiated instruction based on students self-awareness and existing programming practices.more » « less
-
One way to teach programming problem solving is to teach explicit, step-by-step strategies. While prior work has shown these to be effective in controlled settings, there has been little work investigating their efficacy in classrooms. We conducted a 5-week case study with 17 students aged 15-18, investigating students' sentiments toward two strategies for debugging and code reuse, students' use of scaffolding to execute these strategies, and associations between students' strategy use and their success at independently writing programs in class. We found that while students reported the strategies to be valuable, many had trouble regulating their choice of strategies, defaulting to ineffective trial and error, even when they knew systematic strategies would be more effective. Students that embraced the debugging strategy completed more features in a game development project, but this association was mediated by other factors, such as reliance on help, strategy self-efficacy, and mastery of the programming language used in the class. These results suggest that teaching of strategies may require more explicit instruction on strategy selection and self-regulation.more » « less
-
We propose and evaluate a lightweight strategy for tracing code that can be efficiently taught to novice programmers, building off of recent findings on "sketching" when tracing. This strategy helps novices apply the syntactic and semantic knowledge they are learning by encouraging line-by-line tracing and providing an external representation of memory for them to update. To evaluate the effect of teaching this strategy, we conducted a block-randomized experiment with 24 novices enrolled in a university-level CS1 course. We spent only 5-10 minutes introducing the strategy to the experimental condition. We then asked both conditions to think-aloud as they predicted the output of short programs. Students using this strategy scored on average 15% higher than students in the control group for the tracing problems used the study (p<0.05). Qualitative analysis of think-aloud and interview data showed that tracing systematically (line-by-line and "sketching" intermediate values) led to better performance and that the strategy scaffolded and encouraged systematic tracing. Students who learned the strategy also scored on average 7% higher on the course midterm. These findings suggest that in <1 hour and without computer-based tools, we can improve CS1 students' tracing abilities by explicitly teaching a strategy.more » « less
An official website of the United States government
